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Abstract allows the interpretation of a language in which a truth as-
signment may map both a letter and its negation to true. Ex-
tending the idea of Levesque’s limited inferenk®ghaerf and
Cadoli, 199% proposesS-3-entailment ands-1-entailment

for approximate reasoning with tractable results. Based on
Schaerf and Cadoli'$-3-entailment[Marquis and Porquet,
2003 presents a framework for reasoning with inconsistency
by introducing a family of resource-bounded paraconsistent
inference relations. Several policies, e.g., the linear order pol-
icy, are proposed Chopraet al, 2004 incorporates the local
change of belief revision and relevance sensitivity by means
of Schaerf and Cadoli’'s approximate reasoning method, and
shows how relevance can be introduced for approximate rea-
1 Introduction soning in belief revision. Both approaches, Marquis’, and

There are two main ways to deal with inconsistency in on-CoPra’s, depend on syntactic selection procedures for ex-
tologies. One is to diagnose and repair it when we en!€nding the approximation set.

counter inconsistenggchlobach and Cornet, 2003\nother Our approach borrows some ideas from Schaerf and
approach is to simply avoid the inconsistency and to applycadoli's approximation approach, Marquis and Porquet's
a non-standard reasoning method to obtain meaningful arharaconsistent reasoning approach, and Chopra, Parikh, and
swers. In this paper, we will focus on the latter, which is\yassermann’s relevance approach. However, our main idea is
more suitable for the setting in the web area. For exampleselativelysimple given a selection function, which can be de-
in a typical Semantic Web setting, one would be importingfined on the syntactic or semantic relevance, we select some
ontologies from other sources, making it impossible to repaigonsistent sub-theory from an inconsistent ontology. Then
them, and the scale of the combined ontologies may be toge apply standard reasoning on the selected sub-theory to
large to make repair effective. _ find meaningful answers. If a satisfying answer cannot be
The classical entailment in logicsegplosive any formula  found, the relevance degree of the selection function is made

is a logical consequence of a contradiction. Therefore, coness restrictive thereby extending the consistent subtheory for
clusions drawn from an inconsistent knowledge base by clasyrther reasoning.

sical inference may be completely meaningless. The general
task of an inconsistency reasoner is: given an inconsistent on- The main contributions of this paper are:(1) a sefoomal
tology, returnmeaningfulanswers to queries. definitionsto capture reasoning with inconsistent ontologies;
Reasoning with inconsistency is a well-known topic in log- (2) ageneral frameworKor reasoning with inconsistent on-
ics and Al. Many approaches have been proposed to deal wifi®logies based on selection functions, and (3) spnetimi-
inconsistencylBenferhat and Garcia, 2002; Beziau, 2000;hary experimentsvith an implementation of this framework
Lang and Marquis, 2001; Marquis and Porquet, 400rhe  using a rather simple selection function.
development of paraconsistent logics was initiated to chal-

lenge the ‘explosive’ problem of the standard logics. Para'consistency in the Semantic Web by examining several typi-

gggg::iﬂ: lt:())l?tlcrfieitzrli?/?a{l 20?2;?2?;‘2':5 dtnfae}rs;? ";'ra_cal examples and scenarios. Section 3 presents the framework
X . X 1any para- reasoning with inconsistent ontologies. Section 4 discusses
consistent logics. Most of them are defined on a semanti

; : ! MChe selection functions Section 5 presents the algorithms of
which allows both a letter and its negation to hold for an in-p, 4\ “section 6 examines how the syntactic-relevance-based
terpretation. Levesque's limited inferenfleevesque, 1989 selection function can be developed. Section 7 describes a

“The work reported in this paper was partially supported by theprototype of PION and its evaluation. Section 8 discusses
EU-funded SEKT project (IST-506826). further work and concludes the paper.

In this paper we present a framework of reasoning
with inconsistent ontologies, in which pre-defined
selection functions are used to deal with concept
relevance. We examine how the notion of "concept
relevance” can be used for reasoning with inconsis-
tent ontologies. We have implemented a prototype
called PION (Processing Inconsistent ONtologies),
which is based on a syntactic relevance-based se-
lection function. In this paper, we also report the
experiments with PION.

This paper is organised as follows: Section 2 overviews in-



2 Inconsistency in the Semantic Web ¥ = ¢. There are only two answers to that query: either
Here are several typical scenarios which may cause inconsig€S’ (= = ), or 'no’ (X [= ¢). A ‘yes’ answer means
tencies in the Semantic Web. that ¢ is a logical consequence af. A ‘no’ answer, how-
. . ) ever, means thab cannot be deduced from, because we

e Inconsistency Caused by mis-presentation of de- ,qally don't adopt the closed world assumption when using

faults. A notorious example is the bird ontology in o gniglogy. Hence, a ‘no’ answer does not imply that the
which penguins are specified as the birds which cannofegation ofs holds given an ontologi. For reasoning with

fly, however, it contradicts the default statement 'birds;,cqngjstent ontologies, it is more suitable to use Belnap’s

are flying animals’. Another typical example is the Mad- ¢, vajued logidBelnap, 197 to distinguish the followin
Cows ontology in which MadCow is specified as a Cow fg“f epistemicgs(;[[ates Ofpt’he asters: g g

which eats brains of sheep, whereas a Cow is considere
as a vegetarian by default. Definition 1

o Inconsistency Caused by Polysempolysemy refersto (&) Over-determinedt & ¢ and i =¢.
the concept of words with multiple meanings. An ex- (0) AcceptedX k= ¢ andX & —¢.
ample of an inconsistent ontology which is caused by(C) Reéjected & ¢ andX k= —¢.
polysemy is the MarriedWoman Examf#aianget al,  (d) Undetermined % ¢ andX j —¢.
2004, in which the concept 'married woman'’ is used  For an inconsistency reasoner it is expected that is able to
to refer both to a woman who has a husband and to @eturn meaningful answers to queries, given an inconsistent
woman whahada husband but may no longer have one.ontology. In the case of a consistent ontoldgy classical

e Inconsistency through Migration from Another For- ~ reasoning is sound, i.e., a formulededuced fron holds
malism When an ontology specification is migrated in every model ofy. This definition is not preferable for an
from other data sources, inconsistencies may occur. Aiconsistent ontology as every formula follows from it us-
has been found ifSchlobach and Cornet, 2003he  ing classical entailment. However, often only a small part of
DICE terminology (a DL terminology in the Intensive X has been incorrectly constructed or modelled, while the re-
Care domain) suffered from a high number of unsatis-mainder ofy is correct. Therefore, we propose the following
fiable concepts due to its migration from a frame-basedlefinition of soundness.

system. In order to make the semantics as explicit ag)oginition 2 (Soundness)An inconsistency reasone is

tporsl.s'ﬁle’h? very restrlcg\_/e 'gtrgnslanon h.%%gﬁleg Chhosegound if the formulas that follow from an inconsistent the-
0 ighiight as many amoiguities as possi obach — qry 37 follow from a consistent subtheory Bfusing classical

and Cornet, 20(]33h0ws the inconsistent ontology spec- reasoning, namely, the following condition holds:
ification in the Brain Example, in which a brain is con-

sidered to be both a body part and a central nervous sys- YYo= 3 CE)(X ¥ LandY = ¢).
tem, whereas body parts and nervous systems are con-
sidered to be disjoint. In other words, thé~-consequences must be justifiable on

the basis of a consistent subset of the theory. Note however,

e Inconsistency Caused by Multiple Sources When a X , s N
YA S .. that in the previous definition the implication shoulot hold
large ontology specification is generated from multiple, the opposite direction. If the implication would also hold

sources, in particular when these sources are created B ; o ; ;
) the opposite direction it would lead to an inconsistency

several authors, inconsistencies easily occur. There areasoner which returns inconsistent answers. For example
three possibilities for ontology reconciliation: merging, . ' . ; : P
if {a,—a} C X, then the inconsistency reasoner would re-

aligning, or integrating. No matter whether a new on- ; O .
tology is generated by merging or integrating rnultipleturn that botha and —a hold given, which is something

sources, in both cases general consistency objectives aYée va(()qud ![|ke tto prevent, HetEC(ta,ftrlmle |n<;on5|stency_r?astoner
rather difficult to achieve. should not return answers that follow froamy consisten

subset ofX, but from specifically choseisubsets of. In

. other words, the selection of specific subsets on whpichill
3 Formal Dgflnltlons o . be based is an integral part of the definition of an inconsis-
We do not restrict ontology specifications to a particular lantency reasoner, and will be discussed in more detail in the
guage (although OWL and its underlying description logicnext section.
are the languages we have in mind). In general, an ontology . .. i , .
language can be considered to be a set that is generated §gf|r!|tlon 3 (Meaningfulness) An answer given by an in-
a set of syntactic rules. Thus, we can consider an ontologgonsistency reasoner is meaningful iff it is consistent and
specification as a formula set. We use a non-classical entaip®und- Namely, it requires not only the soundness condition,

ment for inconsistency reasoning. In the following, we se  Put also the following condition:

to denote the classical entailment, and gs& denote some S ko= 3 g
non-standard inference relation, which may be parameterized ’
to remove ambiguities. An inconsistency reasoner is said to be meaningful iff all of

With classical reasoning, a quegygiven an ontology> the answers are meaningful.

can be expressed as an evaluation of the consequence relation . . ) ) o
Because of inconsistencies, classical completeness is impos-

http://iwww.daml.org/ontologies/399 sible. We suggest the notion of local completeness:



Definition 4 (Local Completeness)An inconsistency rea- Y R ¢?

soner is locally complete with respect to a consistent subthe l

ory Y/ iff for any formulag, the following condition holds: et
Yo=Y R T = 5(, ¢,0)

Since the condition can be represented as: l
Yo=Y o, = (3, 6, k)

local completeness can be considered as a complement to t

soundness property. An answer to a qugryn ¥ is said to l

be locally complete with respect to a consistent3eiff the i( " consistent and 5" 5 3 )

following condition holds:

Yk ¢ = S k6

Definition 5 (Maximality) An inconsistency reasoner is
maximal iff there is a maximal consistent subtheory such tha
its consequence set is the same as the consequence set of
inconsistency reasoner:

Undetermined A ted: Rejected: r.—
I CHE EDAFT OTAT COE FLA | w5 S pike

Vo(X | ¢ = T R 9)).
We use the same condition to define the maximality for an
answer, like we do for local completeness.

Definition 6 (Local Soundness)An answer to a query =

¢ is said to be locally sound with respect to a consistent set ] ) ) o
¥/ C ¥, iff the following condition holds: Definition 7 (Selection Functions) A selection function is

amappings : P(L)xLx N — P(L) such thats(X, ¢, k) C

Namely, for any positive answer, it should be implied by thepefinition 8 A selection functiors is called monotonicif
given consistent subtheoky under the standard entailment. the subsets it selects monotonically increase or decrease, i.e.,
Proposition 3.1 s(X,0,k) C s(X, ¢,k + 1), or vice verse.

(a) Local Soundness implies Soundness and Meaningfulnessyr monotonically increasing selection functions, the initial
(b) Maximal completeness implies Local Completeness.  get is either an emptyset, i.e(X, $,0) = 0, or a fixed set
Given a query, there might exist more than one maximal con¥, when the locality is required. For monotonically decreas-
sistent subset and more than one locally-complete consisteiitg selection functions, usually the initial s&f:, ¢,0) = X.
subset. Such different maximally consistent subsets may givéhe decreasing selection functions will reduce some formulas
differentj~-consequences for a given queryTherefore, ar-  from the inconsistent set step by step until they find a maxi-
bitrary (maximal) consistent subsets may not be very usefumally consistent set.

for the evaluation of a query by some inconsistency reasoner. Monotonically increasing selection functions have the ad-
The consistent subsets should be chosen on structural or seantage that they do not have to retathsubsets for consid-
mantic grounds indicating the relevance of the chosen subsetation at the same time. If a quelyx ¢ can be answered

Figure 1: Linear Extension Strategy.

with respect to some query. after considering some consistent subset of the ontology
for some value of;, then other subsets (for higher values of
4 Selection Functions k) don't have to be considered any more, because they will

. . . . not change the answer of the inconsistency reasoner.
An inconsistency reasoner uses a selection function to de-

termine which consistent subsets of an inconsistent ontolog .

should be considered in its reasoning process. The generdl Strategies

framework is independent of the particular choice of selecAn inconsistency reasoner that uses a monotonically increas-

tion function. The selection function can either be based orng/decreasing selection function will be called an inconsis-

a syntactic approach, like Chopra, Parikh, and Wassermanntency reasoner that usedirrear extension strateggnd alin-

syntactic relevanceChopraet al., 2004, or based on seman- ear reduction strategyespectively.

tic relevance like for example in computational linguistics as A linear extension strategy is carried out as shown in Fig-

in Wordnet[Budanitsky and Hirst, 2041 ure 1. Given a query¥. k ¢, the initial consistent subs&Y
Given an ontology (i.e., a formula sef) and a queryy, is set. Then the selection function is called to return a consis-

a selection functiors is one which returns a subset Bfat  tent subseE”, which extends’, i.e., X’ ¢ ¥ C ¥ for the

the stepk > 0. Let L be the ontology language, which is linear extension strategy. If the selection function cannot find

denoted as a formula set. We have the general definition aboatconsistent superset Bf, the inconsistency reasoner returns

selection functions as follows: the answer ‘undetermined’ (i.e., unknown) to the query. If the



setX” exists, a classical reasoner is used to che@K'if= ¢ 6 Syntactic Relevance-based Selection
holds. If the answer is ‘yes’, the inconsistency reasoner re-  Fynctions

turns the 'accepted’ answét k= ¢. If the answer is ‘no’,
the inconsistency reasoner further checks the negation of t
query¥”’ = —¢. If the answer is ‘yes’, the inconsistency
reasoner returns the 'rejected’ answep: —¢, otherwise the
current result is undetermined (def.1), and the whole proce
is repeated by calling the selection function for the next con
sistent subset df which extend<:”.

hopraet al., 2004 proposes syntactic relevance to measure
the relationship between two formulas in belief sets, so that
the relevance can be used to guide the belief revision based

Schaerf and Cadoli’s method of approximate reasoning.
Given a formula set, two atomsp, g are directly relevant,
denoted byR(p, ¢, X) iff there is a formulan: € ¥ such that

q appear in. A pair of atomsp andq arek-relevant with

Itis clear that the linear extension strategy may resultintO(féSpect to iff there existpi, ps, . .., pr € L such that: (a)
many unqletermlned answers to queries Wher_1 the .selectlopdo1 are directly relevant; (bp;, piy1 are directly relevant,
function picks the wrong sequence of monotonically increas; 'y~ 1. _ {- and (©)px, q are directly relevant (i.e., di-

ing subsets. It would therefore be useful to measure the S“‘Féctly7relevant ig-relevant fork = 0).
cesfulness of (Iinea_r) extension strategies. N(_)tice, tha_t thiS THe notions of relevance above are based on propositional
depends on the choice of the monotonic selection function. logics. However, ontology languages are usually written in
In general, one should use an extension strategy that is ngbme fragment of first order logic. We extend the ideas of rel-
over-determined and not undetermined. For the linear exterevance to those first-order logic-based languages by restrict-
sion strategy, we can prove that the following properties holding relevance to the co-occurrence of only the predicate let-
ters or constant symbols. The following definition specialises
Proposition 5.1 (Linear Extension) An inconsistency rea- the general definition of relevance for the case wheie a
soner using a linear extension strategy satisfies the followingormula in an ontology.

properties: Given a formulap, we usel (¢), C(¢), R(¢) to denote the
(a) never over-determined, sets of individual names, concept names, and relation names
(b) may be undetermined, that appear in the formularespectively.

(c) always sound, Definition 9 (Direct relevance) Two formula ¢, are di-
(d) a:ways ImealrlunngL ot rectly relevant iff there is a common name which appears both
gg)ma;"/ar)]’st ggamlggi%rgil) ete, in formulag and formulay, i.e.,I(¢) N 1(v) # @V C(¢) N

Y ! C(y) # @V R(¢) N R() # 2.

(g) always locally sound. o i )
Definition 10 (Direct relevance to a set)A formula¢ is rel-
Therefore, an inconsistency reasoner using a linear extergvant to a formula set iff there exists a formula € X such
sion strategy is useful to create meaningful and sound arthat¢ and+ are directly relevant.

swers to queries. It is always locally sound and locally\ye can similarly specialise the notion of k-relevance.
complete with respect to a consistent 3t if the selec- Definition 11 (k-rel T ¢ | , K
tion function always starts with the consistent &t (i.e., efinition 11 (k-relevance) Two formulas ¢, ¢" are k-
s(%, ,0) = o). Unfortunately it may not be maximal. relevant with respect to a formula s&t iff there exist for-

. . . mulasty, ..., € X such thaty and g, g and iy, ...,

We call this strategy dinear one, because the selection 44 Wy, and¢’ are directly relevant.

function only follows one possible ‘extension chain’ for cre- o )
ating consistent subsets. The advantages of the linear strateB\gfinition 12 (k-relevance to a set)A formula ¢ is k-
is that the reasoner can always focus on the current workinéglevant to a formula seX iff there exists a formula> € ¥
sety’. The reasoner doesn't need to keep track of the extersuch thatp andq) are k-relevant with respect tB.
sion chain. The disadvantage of the linear strategy is that ifn inconsistency reasoning we can use syntactic relevance to
may lead to an inconsistency reasoner that is undeterminegefine a selection functionto extend the query R $? as
There exists other strategies which can improve the linear eXollows: We start with the query formulaas a starting point
tension approach, for example, by backtracking and heuristic®r the selection based on syntactic relevance. Namely, we
evaluation. We are going to discuss a backtracking strategy igefine:
Section 6. The second reason why we call the strategy linear 5(%,¢,0) = 2.
is that the computational complexity of the strategy is Iinear.l.hen the selection function selects the formutas 3 which
with respect to the complexity of the ontology reasoning. Let

o are directly relevant tg as a working set (i.ek = 1) to see
?tzybgftr';eé::gﬂmallt)}@\ ofan ontology: and let the complex- \ ather or not they are sufficient to give an answer to the

query. Namely, we define:

Proposition 5.2 (Complexity of Linear Extension) The s(2,¢,1) = {¢ € ¥ | ¢ andy are directly relevarjt

complexity ofx in the linear extension strategyis- £. If the reasoning process can obtain an answer to the query,
In other words, the linear extension strategy does not si nifii-t stops. Otherwise the selection function increases the rel-
cantly increase the complexity of the ontol%y Ireasoningg besvance degree by 1, thereby adding more formulas that are
cause typicallyF is alreadyPSPACE-completéor standard relevantto the current working set. Namely, we have:

concept languagd®onini, 2003. s(X, 0, k) = {v € X | is directly relevant ta(X, ¢, k—1)},



for k > 1. This leads to a "fan out” behavior of the selection 2. We compare PION'’s answers with their intuitive answers
function: the first selection is the set of all formulae that arewhich is supposed by a human to see to what extend PION
directly relevant to the query; then all formulae are selectedan provide intended answers.

that are directly relevant to that set, etc. This intuition is for- For a query, there might exist the following difference be-

malized in the following: tween an answer by PION and its intuitive answer.

Proposition 6.1 The syntactic relevance-based selection e Intended Answer. PION’s answer is the same as the

functions is monotonically increasing. intuitive answer;

Proposition 6.2 If £ > 1, then e Counter-intuitive Answer: PION’s answer is opposite
s(3, 6, k) = {d]o is (k-1)-relevant to} to the intuitive answer. Namely, the intuitive answer is

'accepted’ whereas PION'’s answer is 'rejected’, or vice
The syntactic relevance-based selection functions defined versa.
above usually grows up to an inconsistent set rapidly. That , 4 tious Answer The intuitive answer is 'accepted’ or
may lead to too many undetermined answers. In order to im- rejected’, but PION's answer is 'undetermined’.
prove it, we can require that the selection function returns a )
consistent subsét” at the stef: whens(X, ¢, k) is inconsis- o Reckless Answer PION’s answer is "accepted’ or 're-
tent such that(, ¢, k—1) € X7 C (2, ¢, k). Itis actually jected’ V\_/hereas the intuitive answer is ’undetermlne_d’.
a kind of backtracking strategies which are used to reduce the ~ We call it a reckless answer, because under this situa-
number of undetermined answers to improve the linear exten-  tion PION returns just one of the possible answers with-
sion strategy. We call the procedurea@rer-determined pro- out seeking other possibly opposite answers, which may
cessingODP) of the selection function. Note that the over-  lead to 'undetermined’.
determined processing need no to exhaust the powerset of tir each concept in those ontologies, we create an instance
sets(X, ¢, k)—s(X, ¢, k—1), because of the fact that if a con- 'the_C” on them. We make both a positive instance query and
sistent setS' cannot prove or disprove a query, then nor cana negative instance query of the instance “@fiefor some
any subset ofS. Therefore, one approach of ODP is to re- concepts’” in the ontologies, like a query ’is thé' a C'?".
turn just a maximally consistent subset. bdte|| andk be  PION test results are shown in Figure 2. Of the four test ex-
n — |9], i.e., the cardinality difference between the ontologyamples, PION can return at least 85.7% intended answers. Of
¥ and its maximal consistent subse(note thatt is usually  the 396 queries, PION returns 24 cautious answers or reck-
very small), and leC be the complexity of the consistency less answers, and 2 counter-intuitive answers. However, we
checking. The complexity of the over-determined processingvould like to point out that the high rate of the intended
is polynomial to the complexity of the consistency checking: answers includes many 'undetermined’ answers. One inter-
Proposition 6.3 (Complexity of ODP) The complexity of esting (and we believe realistic) property of the Mad Cows
the over-determined processingis - C. Ontology is that many concepts which are intuitively disjoint
e(_such as cows and sheep) are not actually declared as being
disjoint (keep in mind that OWL has an open world seman-
tics, and does not make the uniqgue name assumption). As a
result, many queries such as "is thew a sheep” are indeed
undetermined on the basis of the ontology, and PION cor-
rectly reports them as undetermined. The average time cost
7 Prototype of PION of the tested queries is about 5 seconds even on a low-end PC
7.1 Implementation (with 550 mhz CPU, 256 MB memory under Windows 2000).

We are implementing the prototype of PION by using SWI- The counter-intuitive results occurs in the MadCows Ex-
Prolog? PION implements an inconsistency reasoner base@mple. PION returns the ;z%ccepyed’ answer to the query 'is
on an linear extension strategy and the syntactic relevancél&madcow a vegetarian?’. This counter-intuitive answer
based selection function as discussed in Sections 5 and Egsults from the weakness of the syntactic relevance-based se-
The selection function returns the first maximal consistent€ction function, because it always prefers a shorter relevance
subset for its over-determined processing. PION is poweref&th whena conflict occurs. In the mad cow example, the path
by XDIG, an extended DIG Description Logic interface for mad cow - cow - vegetarian® is shorter than the path ‘'mad
Prolog[Huang and Visser, 2004 PION supports the TELL COW - eat brain - eat bodypart - sheep are animals - eat animal
requests in DIG data format and in OWL, and the ASK re-- NOT vegetarian’. Therefore, the syntactic relevance-based
quests in DIG data format. A prototype of PION is available Selection function finds a consistent sub-theory by simply ig-

for download at the website: http://wasp.cs.vu.nl/sekt/pion. noring the fact 'sheep are animals’. The problem results from
the unbalanced specification between Cow and MadCow, in

7.2 Experiments and Evaluation which Cow is directly specified as a vegetarian whereas there
We have tested the prototype of PION by applying it on sev{S N0 direct statement 'a MadCow is not a vegetarian’.
eral example ontologies. These example ontologies are the There are several alternative approaches to solve this kind
bird example, the brain example, the MarriedWoman examOf problems. One is to introduce the locality requirement.

ple, and the MadCow Ontolog, which are discussed in Sectiohlamely, the selection function starts with a certain sub-theory
o ’ which must always be selected. For example, the statement

2http://www.swi-prolog.org 'sheep are animals’ can be considered to be a knowledge

Note that ODP introduces a degree of non-determinism: s
lecting different maximal consistent subsets %, ¢, k)
may yield different answers to the quety= ¢. The simplest
example of this i€ = {¢, ~¢}.



Example Queries| IA | CA | RA | CIA | IA Rate(%) | ICR Rate(%)
Bird 50 50| 0O 0 0 100 100
Brain 42 36 | 4 2 0 85.7 100
MarriedWoman 50 48 0 2 0 96 100
MadCow 254 [236] 16| O 2 92.9 99

IA = Intended Answers, CA = Cautious Answers, RA = Reckless Answers, CIA = Counter-Intuitive Answers, |A Rate =
Intended Answer$q), ICR Rate = IA+CA+RA).

Figure 2: PION Test Results

statement which cannot be ignored. Another approach is tEBenferhat and Garcia, 20p5. Benferhat and L. Garcia.
add a shortcut path, like the path 'mad cow - eat animal - Handling locally stratified inconsistent knowledge bases.
NOT vegetarian’ to achieve the relevance balance between Studia Logicapages 77-104, 2002.

the concepts 'vegetarian’ and "NOT vegetarian’, as shown inge,ia, 200D J.-Y. Beziau. What is paraconsistent logic. In
the second mad cow example of PION testbed. The latter ap- rroniiers of paraconsistent logipages 95-111, Baldock,
proach can_be achieved automatically by apcommodaﬂon of 5000. Research Studies Press.

the semantic relevance from the user queries. The hypothe- ] ) ) )

sis is that both concepts appear in a query more frequentliBUda”'tSky and Hirst, 20Q1A. Budanitsky and G. Hirst.
when they are semantically more relevant. Therefore, froma Semantic distance in wordnet: ~An experimental,
semantic point of view, we can add a relevance shortcut path application-oriented evaluation of five measures. In

between strongly relevant concepts. Workshop on WordNet and Other Lexical Resources
Pittsburgh, PA., 2001.
8 Discussion and Conclusions [Chopraet al, 2004 S. Chopra, R. Parikh, and R. Wasser-

In this paper, we have presented a framework for reasoning Mann. Approximate belief revision- prelimininary report.
with inconsistent ontologies. We have introduced the for- Journal of IGPL 2000.

mal definitions of the selection functions, and investigated Donini, 2003 F. Donini. Complexity of reasoning. IBe-
the strategies of inconsistency reasoning processing based onscription Logic Handbookpages 96-136, 2003.

alinear extension strategy. rLHuang and Visser, 2004Z. Huang and C. Visser. Ex-

One of the novelties of our approach is that the selectio o .
: P . = tended DIG Description Logic Interface Support for Pro-
functions depend on individual queries. Our approach dif log. SEKT Deliverable D3.4.1.2, 2004,

fers from the traditional one in paraconsistent reasoning, non-
monotonic reasoning, and belief revision, in which a pre-[Huanget al, 2004 Z. Huang, F. van Harmelen, A. ten
defined preference ordering for all of the queries is required. Teije, P. Groot, and C. VisseReasoning with Inconsistent
This makes our approach more flexible, and less inefficient Ontologies: framework and prototyp&EKT Deliverable
to obtain intended results. The selection functions can be D3.4.1,2004.

viewed as ones creating query-specific preference ordering’jLang and Marquis, 2031J. Lang and P. Marquis. Remov-
We have implemented and presented a prototype of PION. jg inconsistencies in assumption-based theories through

In this paper we have provided the evaluation report of the knowledge-gathering actionsStudia Logica pages 179—
prototype by applying it to the several inconsistent ontology 214, 2001.

examples. The tests show that our approach can obtain in-
xamp W ur app I ITLevesque, 1949H. Levesque. A knowledge-level account

tuitive results in most cases for reasoning with inconsisten ; ; )
ontologies. Considering the fact that standard reasoners al- ggggd‘ljgggn' InProceedings of IJCAI'89pages 1061~

ways results in either meaningless answers or incoherence er-
rors for queries on inconsistent ontologies, we can claim thaltMarquis and Porquet, 2003. Marquis and N. Porquet.
PION can do much better, because it can provide a lot of in- Resource-bounded paraconsistent inferendnnals of
tuitive, thus meaningful answers. This is a surprising result Mathematics and Atrtificial Intelligencepages 349-384,
given the simplicity of our selection function. 2003.

In future work, we are going to test PION with more large- [Schaerf and Cadoli, 1995M. Schaerf and M. Cadoli.
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