
LarKC
The Large Knowledge Collider

a platform for large scale integrated reasoning and Web-search

FP7 – 215535

D1.2.2

Improved Operational Framework

Coordinator: Gaston Tagni
With contributions from: Gaston Tagni (VUA), Zhisheng Huang (VUA), Stefan
Schlobach (VUA), Annette ten Teije (VUA), Frank van Harmelen (VUA), Barry
Bishop (UIBK), Florian Fischer (UIBK), Vassil Momtchev (Ontotext), Yi Zeng

(WICI), Yan Wang (WICI), Yi Huang (Siemens), Georgina Gallizo (HLRS),
Matthias Assel (HLRS), Jose Quesada (MPI)
Quality Assesor: Michael Witbrock (CycEur)

Quality Controller: Reto Krummenacher (UIBK)

Document Identifier: LarKC/2008/D1.2.2
Class Deliverable: LarKC EU-IST-2008-215535
Version: version 1.0.0
Date: March 30, 2010
State: final
Distribution: public

FP7 – 215535

Deliverable 1.2.2

Executive Summary

This deliverable is the second of a series of three deliverables aimed at defining an
Operational Framework for scalable reasoning in LarKC and as such is a continu-
ation of the work reported in Deliverable D1.2.1 - Initial Operational Framework
(M7). The main contributions of this document are: First, a detailed analysis
and discussion of different plug-ins currently being developed in LarKC in the
context of the different technical work packages along with a discussion of several
re-use possibilities between plug-ins and their sub-components. The second con-
tribution is the specification of a series of design patterns aimed at supporting the
development of plug-ins and other components in LarKC to achieve reasoning at
Web-scale.

1

FP7 – 215535

Deliverable 1.2.2

Document Information

IST Project
Number

FP7 – 215535 Acronym LarKC

Full Title Large Knowledge Collider
Project URL http://www.larkc.eu/
Document URL
EU Project Officer Stefano Bertolo

Deliverable Number 1.2.2 Title Improved Operational Framework
Work Package Number 1 Title Conceptual Framework

Date of Delivery Contractual M24 Actual 31-March-10
Status version 1.0.0 final �
Nature prototype � report � dissemination �
Dissemination
Level

public � consortium �

Authors (Partner)

Barry Bishop (UIBK), Florian Fischer (UIBK), Gaston Tagni (VUA), Zhisheng
Huang (VUA), Vassil Momtchev (OntoText), Yi Zeng (WICI), Yan Wang (WICI),
Jose Quesada (MPI), Yi Huang (SIEMENS), Georgina Gallizo (HLRS), Matthias
Assel (HLRS), Stefan Schlobach (VUA), Annette ten Teije (VUA), Frank van
Harmelen (VUA)

Resp. Author
Gaston Tagni (VUA) E-mail gtagni@cs.vu.nl
Partner VUA Phone +31 (20) 59-87753

Abstract
(for dissemination)

This deliverable is the second of a series of three deliverables aimed at defining an
Operational Framework for scalable reasoning in LarKC and as such is a continu-
ation of the work reported in Deliverable D1.2.1 - Initial Operational Framework
(M7). The main contributions of this document are: First, a detailed analysis and
discussion of different plug-ins currently being developed in LarKC in the context
of the different technical work packages along with a discussion of several re-use
possibilities between plug-ins and their sub-components. The second contribu-
tion is the specification of a series of design patterns aimed at supporting the
development of plug-ins and other components in LarKC to achieve reasoning at
Web-scale.

Keywords LarKC platform, LarKC Plug-ins, Web scale reasoning, Semantic Web

2

FP7 – 215535

Deliverable 1.2.2

Project Consortium Information

Acronym Partner Contact
Semantic Technology Institute Innsbruck
http://www.sti-innsbruck.at

Prof. Dr. Dieter Fensel
Semantic Technology Institute (STI)
Innsbruck, Austria
E-mail: dieter.fensel@sti-innsbruck.at

AstraZeneca AB
http://www.astrazeneca.com/

Bosse Andersson
AstraZeneca
Lund, Sweden
E-mail: bo.h.andersson@astrazeneca.com

CEFRIEL SCRL.
http://www.cefriel.it/

Emanuele Della Valle
CEFRIEL SCRL.
Milano, Italy
E-mail: emanuele.dellavalle@cefriel.it

CYCORP, RAZISKOVANJE IN EKSPERI-
MENTALNI RAZVOJ D.O.O.
http://cyceurope.com/

Dr. Michael Witbrock
CYCORP, RAZISKOVANJE IN EKSPERIMEN-
TALNI RAZVOJ D.O.O.,
Ljubljana, Slovenia
E-mail: witbrock@cyc.com

Hchstleistungsrechenzentrum, Universitaet
Stuttgart
http://www.hlrs.de/

Georgina Gallizo
Hchstleistungsrechenzentrum, Universitaet
Stuttgart
Stuttgart, Germany
E-mail : gallizo@hlrs.de

Max-Planck-Institut fur Bildungsforschung
http://www.mpib-berlin.mpg.de/index_

js.en.htm

Dr. Lael Schooler,
Max-Planck-Institut fr Bildungsforschung
Berlin, Germany
E-mail: schooler@mpib-berlin.mpg.de

Ontotext Lab, Sirma Group Corp.
http://www.ontotext.com/

Atanas Kiryakov,
Ontotext Lab, Sirma Group Corp.
Sofia, Bulgaria
E-mail: atanas.kiryakov@sirma.bg

SALTLUX INC.
http://www.saltlux.com/EN/main.asp

Kono Kim
SALTLUX INC
Seoul, Korea
E-mail: kono@saltlux.com

SIEMENS AKTIENGESELLSCHAFT
http://www.siemens.de/

Dr. Volker Tresp
SIEMENS AKTIENGESELLSCHAFT
Muenchen, Germany
E-mail: volker.tresp@siemens.com

THE UNIVERSITY OF SHEFFIELD
http://www.shef.ac.uk/

Prof. Dr. Hamish Cunningham
THE UNIVERSITY OF SHEFFIELD
Sheffield, UK
E-mail: h.cunningham@dcs.shef.ac.uk

VRIJE UNIVERSITEIT AMSTERDAM
http://www.vu.nl/

Prof. Dr. Frank van Harmelen
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, Netherlands
E-mail: Frank.van.Harmelen@cs.vu.nl

THE INTERNATIONAL WIC INSTITUTE,
BEIJING UNIVERSITY OF TECHNOLOGY
http://www.iwici.org/

Prof. Dr. Ning Zhong
THE INTERNATIONAL WIC INSTITUTE
Mabeshi, Japan
E-mail: zhong@maebashi-it.ac.jp

INTERNATIONAL AGENCY FOR RESEARCH
ON CANCER
http://www.iarc.fr/

Dr. Paul Brennan
INTERNATIONAL AGENCY FOR RESEARCH ON
CANCER
Lyon, France
E-mail: brennan@iarc.fr

3

FP7 – 215535

Deliverable 1.2.2

Table of Contents

1 Introduction 1

2 Improving Performance by Tighter Integration of Components 2
2.1 Integration of Selection and Query 2
2.2 Interleaving Reasoning and Selection 3
2.3 Tighter integration with the Data Layer 4

3 Select and Identify Plug-in Types 6
3.1 Introduction . 6
3.2 Interests-Based Selecter . 6
3.3 Random Indexing-based Selecter . 8

4 Transform Plug-in Type 11
4.1 Introduction . 11
4.2 ML-based Transformer . 11

4.2.1 Machine Learning Approach SUNS on Semantic Web Data . 11
4.2.2 ML-based Transform Plug-ins 14
4.2.3 Reuse of Components . 16

5 Reason Plug-in Type 17
5.1 Introduction . 17
5.2 Rule-based reasoner . 17

5.2.1 Rule-based reasoner LarKC plug-in 19
5.2.2 Reuse of sub-components for reasoning 20

5.3 Anytime Instance Retrieval by Ontology Approximation 21
5.3.1 A Framework for Anytime Reasoning by Ontology Approx-

imation . 22
5.3.2 Approximate Reasoning Plug-in 24
5.3.3 Reuse of sub-components for Anytime Approximate Reasoning 27

5.4 Reasoning with Inconsistencies in PION 29

6 Design Patterns 33
6.1 Introduction . 33
6.2 Expensive Pre-computation Followed by Cheap Computation 34
6.3 Expensive Computation + Cheap Computation + Access to Exter-

nal Resources . 36
6.4 Continuous Expensive Computation 37
6.5 Replication + Data partitioning . 38
6.6 Balanced Computation . 39

7 Conclusion 41

4

FP7 – 215535

Deliverable 1.2.2

1 Introduction

This deliverable is the second of a series of three deliverables aimed at defining an
Operational Framework for scalable reasoning in LarKC and as such is a continu-
ation of the work reported in Deliverable D1.2.1 - Initial Operational Framework
(M7). The goal of this deliverable is twofold: Firstly, to briefly report on the cur-
rent status of the larKC platform, which has been improving incrementally over
the last seventeen months. To this end we give a short overview of the functional-
ity provided by the main components of LarKC, namely its plug-in types and data
layer component. Secondly, to report on the results of a series of activities aimed at
improving re-use and tighter integration of components in LarKC. The early archi-
tecture of LarKC exploited a separation of components along conceptual lines, i.e.
identify, transform, select, reason and decide. We showed how existing software
components could be fitted conveniently into these categories. Their convenience
was manifested in the quick delivery of interesting demonstrators and large set of
plugins, often wrapping third-party solutions.

However, a well-known design trade-off in in computer science is between mod-
ularity and efficiency. The purpose of this deliverable is to investigate a closer
coupling between components.

Contributions of this Deliverable. The main contributions of this deliverable
are the following: First, a detailed analysis and discussion of different plug-ins
currently being developed in LarKC in the context of the different technical work
packages. This includes a description of the plug-ins’ functionality, an overview of
the plug-ins’ architecture along with a discussion of several possibilities for re-use
between plug-ins and their sub-components. The second contribution of this de-
liverable is the specification of a series of design patterns aimed at supporting the
development of plug-ins and other components in LarKC to achieve reasoning at
Web-scale. In the scope of WP5 The Collider Platform, several design patterns
have been identified as a result of the analysis of performance and scalability of
the LarKC platform architecture and current prototype implementations. These
design patterns are modelling the features of different kind of LarKC workflows,
which may present some limitations on performance and scalability, under cer-
tain deployment conditions, and specifying concrete requirements with regards to
performance and scalability improvement.

Structure of this document. This document is structured as follows: Chapter
2 discusses the relation between scalability, performance and tighter integration of
components in LarKC. Chapters 3, 4 and 5 are concerned with reusability of plug-
ins and their components. In particular, Chapter 3 is concerned with discussing
different re-use possibilities from the perspective of the Select and Identify plug-in
types. Chapter 4 is devoted to the discussion of re-use possibilities w.r.t Transform
plug-ins. Finally, Chapter 5 is devoted to discussing re-use from the perspective
of Reason plug-ins. Chapter 6 introduces five design patterns aimed at supporting
developers in the design of plug-ins and workflows in LarKC. The last chapter of
this document, Chapter 7 concludes the document.

1

FP7 – 215535

Deliverable 1.2.2

2 Improving Performance by Tighter Integra-
tion of Components

2.1 Integration of Selection and Query

In what regards to selection strategies, we have conducted a comparison of user
interests-based query refinement and the integration of interests-based selection
and querying. In Chapter 3 of D2.3.2 [26] and Chapter 4 of D4.3.2 [16], we reported
some experiments on the integration of selection and querying. Here we give a brief
conclusion of the results and their meaning w.r.t scalability on LarKC. The reader
is referred to the aforementioned deliverables for further details.

The evaluation performed in Deliverable D2.3.2 is based on three different
query strategies, namely:

• Strategy 1: Selection based on the original query. This strategy uses the
original query posed by the user without applying any query refinement
mechanism.

• Strategy 2: Interests-based query refinement. The original query posed by
the user is refined (rewritten) based on the user’s interests. The refined query
is then used to select a subset of the dataset.

• Strategy 3: Querying with Interests-based selection. This strategy selects
a relevant subset of the dataset based on the user’s interests, which are
specified using the context parameter of the Select plug-in type). After this,
the original query posed by the user is answered w.r.t the subset of the
dataset computed before.

Experimental results showed that since the “Interests-based Query Refinement”
strategy takes more constraints in comparison to the original query posed by the
user, it requires more processing time for answering the query. In fact, results
showed that as the size of the data increases the time to answer the query in-
creases very rapidly; which suggests that this method does not scale well w.r.t the
answering time. Although this method takes more time to process a given query,
as reported in D2.3.1 [27], the quality of the results is much better than the quality
of results obtained without query refinement.

Strategy 3 integrates selection and querying in order to provide a scalable
method for query processing on large scale data. Since this strategy selects relevant
subsets of a dataset in advance, the required query time reduces a lot, and as the
size of the dataset grows the query time is always less and does not increase equally
fast in comparison to strategies 1 and 2. The quality of results is the same as that
of strategy 2. In summary, this strategy scales better than the previous two.

Although the selection and querying process can benefit from user interests as
contextual constraints, we find that from the processing time perspective, if we
add more constraints for the query, more processing time may be needed. This
is both true for both strategies 2 and 3. Hence, the balance between contextual
constraints and processing time should be considered.

In conclusion, by integrating selection and query answering, query time can be
significantly reduced (assuming the user does not require a complete set of answers
and prefers results that are much more related to her background).

2

FP7 – 215535

Deliverable 1.2.2

2.2 Interleaving Reasoning and Selection

Interleaving reasoning and selection is considered to be an approach to improve the
performance of the LarKC platform. The main idea of the interleaving framework
is to use selectors to select only limited and relevant part of data for reasoning, so
that the efficiency and the scalability of reasoning can be improved. The general
scenario of interleaving reasoning and selection consists of the following three steps:

• Selection: Use a selector to select parts of the input data.

• Reasoning: Use a reasoner to reason over the selected data;

• Deciding: Use a decider to decide whether the procedure should be stopped
in order to return the answers to the user or, the process should go back to
the selection step to continue the interleaving processing.

Several strategies have been proposed for selecting parts of a given dataset.
Selection of parts of a dataset can be made based on some relevance measure. For
example, a syntactic relevance measure is one that is based on checking symbolic
co-occurrances. Alternatively, semantic relevance measures use some kind of back-
ground knowledge to provide information about the meaning of the data. The
selection can also be made based on the user’s preferences or interests. In LarKC,
we have developed several approaches for interleaving selection and reasoning in-
cluding the following (the interested reader is referred to Deliverable D4.3.1 for
further details):

• Query-based Selection. Query-based selection is a selection strategy that
selects data/axioms by examining the relevance of axioms w.r.t. the rea-
soning query. This selection strategy has been implemented in PION, a
system for reasoning with inconsistent ontologies that interleaves reasoning
and query-based selection. PION uses selection functions which uses either
syntactic or semantic relevance measures for comparing data with the rea-
soning queries. A detailed description of the PION system is provided in
Section 5.4.

• User Interest-based Selection. User interest-based selection is a strategy
in which selection is made based on the user’s interests. This kind of selec-
tion is examined with respect to different user interests specified at different
granularity levels. In D4.3.1, we investigate Web scale reasoning from the
perspective of granular reasoning, and develop several strategies for reason-
ing at Web scale that consider users’ interests at several levels of granularity.

• Language-based Selection. Language-based selection is one in which
subsets of a dataset are computed by selecting parts of the ontological vo-
cabulary. In D4.3.1, we developed several approaches for anytime instance
retrieval by ontology approximation where the approximate ontologies are
computed using different subsets of the original ontology’s vocabulary. We
also report on the results of different experiments using a comprehensive set
of realistic ontologies.

3

FP7 – 215535

Deliverable 1.2.2

A framework for interleaving selection and reasoning requires a close integra-
tion between select and reason plug-ins. Both select and reason plug-ins must be
implemented in such a way to allow the reason component to give feedback to the
select component on the quality of the selection. Based on this feedback and on
the previous selection, a select plug-in should be able to make new selections of
data that satisfy the needs of the reasoner (or any other plug-in using the results
of the selection process). This tight collaboration between select and reason plug-
ins should be designed to improve the efficiency of reasoning. That kind of the
improvement may also rely on a decider to provide some necessary information
for the seleter to make a better selections for the next round of the interleaving
process. In Chapter 5 we are going to discuss various scenarios where interleaving
reasoning and selection may improve the performance of the LarKC platform.

2.3 Tighter integration with the Data Layer

The data layer is a core component of the LarKC platform that ensures the effi-
cient persistence and communication of information (represented as RDF) among
the different plug-ins. This component extends the ORDI Second Generation (SG)
framework and adds an abstraction level that hides the physical location of data.
Thus, the platform supports greater flexibility in the deployment of complex work-
flow scenarios and automates the information exchange by value or reference. The
extra abstraction layer could also lead to inefficiency related to the processing of
remote large datasets or to generic and high-level query interface. In this section
we will discuss if the tighter integration between the platform plug-ins and the
data layer could lead to increased scalability.

A typical example of computation that is tightly coupled with the data is
the computation performed by the Select plug-in. A selector is responsible for
early filtering of data and for narrowing down the relevant information needed for
answering a given query. The typical implementation of such plug-in type is very
I/O demanding and often requires extended query support to minimize the traffic
between the plug-in and data layer processes. A very simple sandbox example is
the task of retrieving from the LDSR service 1 the number of people for which their
birth place is known. The following extract of XML code illustrates the SPAQRL
query encoding this request.

PREFIX dbp-ont: <http://dbpedia.org/ontology/>

SELECT *

WHERE {

?Person dbp-ont:birthPlace ?BirthPlace ;

}

The data request would require to transfer the complete result set and count
its size within the plug-in process, which may be a fairly inefficient operation due
to 1) network traffic and 2) the overhead of data serialization and deserialization.

1http://ldsr.ontotext.com

4

FP7 – 215535

Deliverable 1.2.2

In order to optimize this behaviour the underlying ORDI engine exposes a new
query construct, which allows getting only the result count:

PREFIX dbp-ont: <http://dbpedia.org/ontology/>

SELECT *

FROM <http://www.ontotext.com/count>

WHERE {

?Person dbp-ont:birthPlace ?BirthPlace ;

}

The previous example illustrates a scenario where in order to achieve efficiency
and scalability the light-weight retrieval logic is pushed down to the data layer.
This will significantly reduce the cost of data transfers over the network and the
serialization overhead on the server. In the case of in-process communication (e.g.,
within the boundaries of a single virtual machine) the optimisation is still beneficial
because the ORDI framework utilizes the internal and highly efficient TRREE
model. The overall architecture of the data layer and its underlying components is
depicted in Figure 2.1. The Data Layer’s API provides a standard set of operations,
which hide the physical location of the data. However, in scenarios dealing with
high volumes of data and information the processing of remote data may become a
serious bottleneck. This would enforce a tighter integration between specific plug-
ins and the data layer, which could be achieved using data layer engine extensions.
Such extensions are successfully tested in the implementation of DualRDF and
RDFPageRank selector plug-ins (see [1] for more details).

Figure 2.1: Extended functionality supported by LarKC data layer API

5

FP7 – 215535

Deliverable 1.2.2

3 Select and Identify Plug-in Types

3.1 Introduction

An Identify plug-in is a query-driven plug-in whose main role is to identify the
subset of data that is relevant for answering a user’s query. An Identify plug-in
is used for narrowing the scope of a reasoning task from all available information
sets to those information sets that can contribute to answering a given query. The
plug-in’s interface defines three input parameters: the user’s query that drives
the identification/selection mechanism, hence the term query-driven plug-in, a
contract parameter that is used for specifying the dimensions of the output and, a
context parameter that allows other plug-ins and components in LarKC to access
and exchange information about plug-in’s state. The plug-in’s output is a collection
of Information Sets constructed according to the plug-in’s contract parameter.

The role of a Select plug-in in LarKC is to further narrow the scope or search
space of a reasoning task by selecting a subset (or sample) of the data set that has
been made available by an instance of the Identify plug-in type. A Select plug-in
has three input types: a set of statements representing the data from which samples
will be drawn, a contract parameter that is used for defining the dimensions of the
output, eg. to specify the size of the sample to be taken and, a context parameter
that allows for plug-ins to access and exchange information about the state of
the plug-in. Upon execution this plug-in returns a set of statements representing
a subset of the set of statements given as input to the plug-in. Although the
interface of a Select plug-in seems rather simple is actually quite flexible allowing
for different selection techniques and strategies to be implemented as different
instances of it. The only requirement is to accept a set of statements and return
a (sub)set of statements. For a detailed description of the current architecture of
the LarKC platform the reader is referred to Deliverable D5.3.2 - Overall LarKC
Architecture and Design [11].

The following sections describe the overall design of some of the Select and
Identify plug-ins currently under development in LarKC. The next section will
report on the design decisions and overall architecture of a Select plug-ins that
take the user’s interests into account in order to select parts of a data set.

3.2 Interests-Based Selecter

The users are not always aware that in many cases their query requirements are
closely related to their contexts (e.g. their previous interests, etc.) which act as
the environmental factors for the query tasks. In addition, the constraints from the
contexts do not always explicitly contain in the query input by the users. Following
the discussion in D2.3.1 [27], we developed a selecter plug-in named Interest-Based
Selecter. Its function is to create a selection over the input statements, based on
user interests.

Figure 3.1 shows the architecture of the Interest-Based Selecter. This plug-
in is composed of 5 modules, namely, Context Manager, User Interest Manager,
Query Manager, Query Engine and Results Manager. The Context Manager is
responsible for managing the context information. The User Interest Manager is

6

FP7 – 215535

Deliverable 1.2.2

used to manage user interests information, including the function of extracting
user interests. The Query Manager is for creating SPARQL queries based on user
interests. The Query Engine is responsible for executing SPARQL queries. Results
Manager is used to organize the results of the SPARQL queries.

Figure 3.1: The Architecture of the Interest-Based Selecter plug-in

At run time, the plug-in accepts the context parameter and uses the Context
Manager module to get current user’s basic information, such as user identifier
(the name or the URI) and the identifier of the data source which includes user
interests. Then the User Interest Manager module extracts user interests from the
given data source with user identifier. The Query Manager module is responsible
for generating SPARQL queries with constraints driven by the user interests. After
that, the Query Engine module executes these queries to get a group of subsets.
Finally, Results Manager module merges them to create a subset of the original
dataset, which is relevant to current user’s interests.

Figure 3.2: The Interest-Based Selecter plug-in in a workflow

Figure 3.2 shows a LarKC workflow that uses the Interest-Based Selecter plug-
in. In this workflow, the selecter is the Interest-Based Selecter plug-in which
receives output of the identifier as its input, and produces output as the input of
the reasoner. Here the identifier can be any identifier plug-ins developed. The
reasoner can be any LarKC reasoner plug-ins. The decider interacts with each of
the three plug-ins, and it also decides the size of the subset selected by constraints
from user interests.

7

FP7 – 215535

Deliverable 1.2.2

Till now, we have developed two plug-ins, namely, the Interests-Based Selecter
and the Interests-Based Reasoner. They are both based on this model. Since our
work is user-centric, we need some features to represent a user’s basic information.
For reuse, we propose to add a set of classes to LarKC API to represent the context
of the users, such as user interests. In this way, any plug-in that need to utilize
user information could reuse the class provided by the platform.

In the Interests-Based selecter, the class “ContextImpl” could be partially
reused. This class implements the interface “Context” provided as LarKC selecter
plug-in API. It is responsible to parse the context object. Through the parsing
process, the plug-in gets the user information passed by the context, namely, the
user name, user interests, etc. So, if any other plug-ins need this kind of user
information, they could reuse this class in the Interest-Based selecter. For ex-
ample, in the Interest-Based Reasoner plug-in that we developed, we have reused
the “ContextImpl” class. Both of these plug-ins are available at http://www.wici-
lab.org/wici/wiki/index.php/LarKC .

3.3 Random Indexing-based Selecter

The ESA and random indexing (RI, [29]) plugins are selectors. They are used for
subsetting a large knowledge space. They take a SPARQL query plus set of rdf
triples and produce a smaller set of rdf triples. For brevity, we will describe here
RI only. Note that these methods can act on both the plain text description of
the concepts from Wikipedia and on RDF molecules.

Random Indexing is a machine learning technique that offers the mechanisms
to measure the semantic distance between two “passages” (where a passage is
simply defined as a collection of one or more words, or an RDF molecules) in a
“semantic space”, which is created from the input text. The space is generated
by first constructing a matrix whose cell entries are the number of times a given
word appears in a given passage. As an example, consider the passage “I have
one sister and one brother.” If row i corresponds to the aforementioned passage
and column j corresponds to the word “one”, then the value in cell ij would be 2
because “one” appears in the passage twice. The other words appear only once,
so the values in the other cells in row i would be 1.

The space can be viewed in an instructive but oversimplified way: Passages with
similar semantic content are located near one another in the space, and words that
have occurred in similar passages are also located near one another in the space.
This view uncovers one of the benefits of dimension reduction words that did not
co-occur, but occurred in similar contexts (e.g., “doctor” and “physician”), will
be grouped together as well. Given that the words and passages in the space are
arranged according to their semantic content, it is therefore termed a semantic
space.

In our particular implementation, Random Indexing starts with a matrix of
words by contexts where a context is a Wikipedia concept (we preselected the
top 1M concepts to save computation). Then each word and each context is first
assigned a random high-dimensional sparse vector: they contain a small proportion
of +/- elements (this proportion is called the seed value) with all other elements
set to zero. This is enough to make vectors different from each other.

8

FP7 – 215535

Deliverable 1.2.2

The plain text RI plugin is trained on Wikipedia, and thanks to the paralelism
to DBpedia, we can assign weights to nodes in the RDF graphs. The weights
are proportional to the semantic similarity between the query and the elements
according to RI. The plain text RI plugin needs to convert a SPARQL query into
a keywords query. Right now we use the ’extractKeywords’ method from the
baseline plugin.

Once the sparse binary index vectors are constructed, a word’s vector becomes
the sum of the vectors for the contexts in which it appears throughout the text
corpus. Conversely, a document space can also be constructed as the sum of the
index vectors for words appearing in each document. Hence, random indexing
does not require a dimensional reduction operation, which is the computationally
expensive step that made other methods less than ideal for large scale settings.
Random Indexing is based on the fact that a term-document matrix computed from
a corpus is sparse. The sparsity is large enough that the vector representations
can be projected onto a basis comprising a smaller number of randomly allocated
vectors. Due to the sparseness condition, the basis of random vectors has, in
general, a high probability of being orthonormal.

The plugins work in three steps, only step 2 is different for RI and ESA (we
will discuss the details for each in their own sections).

1. Selection of the most important Wikipedia concepts. We followed
the procedure in [10]. Although Wikipedia has currently almost four million
articles, not all of them are equally useful for statistical semantics. Some
articles correspond to too specific concepts (e.g., the game ’Voyage Century
Online’). Other pages are uninteresting because they contain almost no text
(e.g., specific dates). We also eliminated articles that are just too short (less
that 100 words after stemming and removing function words).
We also used the Link Structure of Wikipedia to determine which concepts
are more prominent. We eliminated all concepts that didn’t have at least 5
incoming and outgoing links. We ended up with about 1M concepts.

2. Creation of the space. This is a one-off operation, but it is computa-
tionally expensive (minutes, sometimes hours). For example, computation
of RI with 1000 dimensions takes 20 minutes on an office PC. This operation
produces a vector for each of the Wikipedia concepts in the first step. The
plugins cannot operate without those vector spaces. The one-off computa-
tion does not need to happen on the same computer that runs LarKC. Once
computation is done, the vector space take about 3-4 gigabyte of space and
can be moved to a different location. It can also be shipped with working
plugin code, so an end user needs not to worry about the details of space
creation.

3. Computation of nearest neighbors. This operation takes place every
time we need to use Subsetting with a SPARQL query. We compute the
weights that will be assigned to the entire LDSR graph. It takes seconds,
but this is a time penalty that we need to add to the time it takes OWLIM
to compute the answer.

Step two, the creation of the space is one thing that differentiates these plugins
from the rest. A plugin has two parts, a part integrated with LarKC and the

9

FP7 – 215535

Deliverable 1.2.2

computation part. This division of labor is by design. The LarKC plugin is a thin
client; no heavy-weight computation takes place there.

Figure 3.3: The Architecture of the Random Indexing Select plug-in, (implemented
as a reasoner)

Figure 3.3 shows the components of the plugin. The left side is the thin client,
and the right side is the computationally intensive part implemented as web service.
The two parts are separable, the computation code can be called using http and
soap, which makes it somewhat reusable without writing specific code. For a (more
detailed) class diagram, see D2.3.2. The plugins produce a continuous measure of
similarity that can be reused in different ways. For example, it could be used
for ontology matching (PION) instead of Google distance, or in any case where
approximate matching would be desirable.

10

FP7 – 215535

Deliverable 1.2.2

4 Transform Plug-in Type

4.1 Introduction

The role of a Transform plug-in in LarKC is to transform data from one format
to another format. The data to be transformed can be either a query or an
information set that is considered relevant for achieving a particular task, e.g.
answering a user’s query. To support this the LarKC platform defines two types of
Transform plug-ins, one for transforming queries and the other for transforming
information sets. Similar to other plug-in types in LarKC both plug-in types accept
a parameter that specifies the contract to be agreed upon by the caller and the
plug-in and a parameter for encapsulating the plug-in’s context information. The
former is usually used for defining the dimensions of the plug-in’s output and in the
Transform plug-ins here described it is used also for setting up the environment
of the transformation, e.g. definition of the population, feature pruning threshold
and learning algorithm specific parameters, while the latter allows plug-ins to
communicate their state to other components in the platform.

This chapter reports on the work related to information set Transform plug-
ins and specifically transform plug-ins that use machine learning techniques to
transform data. The chapter is organized as follows: First, we introduce the
machine learning approach statistical unit node set (SUNS) which is suitable for the
challenging data situation on the Semantic Web. Then we describe the architecture
and the functionalities of ML-based Transform plug-ins we have developed so far in
context of LarKC. Finally we analyze the reusability of components in perspective
of other plug-in types.

4.2 ML-based Transformer

4.2.1 Machine Learning Approach SUNS on Semantic Web
Data

One of the main characteristics of Semantic Web (SW) data is that it is notoriously
incomplete. A popular example is the well known friend-of-a-friend data set where,
for privacy concerns and other reasons, some members document exhaustive pri-

Figure 4.1: Example of an RDF graph displaying a social friendship network

11

FP7 – 215535

Deliverable 1.2.2

vate and social information whereas almost nothing is known for other members.
Although deductive reasoning can be used to complement factual knowledge based
on the ontological background, still a tremendous number of potential statements
remain to be uncovered. Therefore we are focused on the prediction of potential
relationships and attributes by exploiting regularities in the data using statisti-
cal relational learning algorithms. An important goal of learning approaches and
plug-ins in the WP3 is to estimate the truth values of triples exploiting patterns
in the data. Here we need to take into account the nature of the SW which is dy-
namically evolving and quite noisy. Thus flexibility and ease of use are preferred
properties if compared to highly sophisticated approaches that can only be applied
by a small number of machine learning experts.

Looking at the data situation on the Semantic Web, there are typically many
possible triples associated with an entity (these triples are sometimes called entity
molecules or, in our work, statistical unit node set) of which only a small part
is known to be true. Due to the large degree of sparsity of the relationship data
in the SW, multivariate prediction is appropriate for SW learning. The rows in
the learning matrix, i.e. data points, are defined by the key entities (statistical
units) in the sample. The columns are formed by nodes that represent the truth
values of triples that involve the statistical units. Nodes representing aggregated
information form the inputs. The size of the training data set is under the control
of the user by means of sampling. Thereby the data matrix is typically independent
or only weakly dependent on the overall size of the SW and in consequence the
time consume and feasibility of model training is essentially independent of the
overall size of the SW.

Defining the Sample

We must be careful in defining the statistical unit, the population, the sampling
procedure and the features. A statistical unit is an object of a certain type, e.g.,
a person. The population is the set of statistical units under consideration. In
our framework, a population might be defined as the set of persons that attend a
particular university. For learning we use a subset of the population. Based on
the sample, a data matrix is generated where the statistical units in the sample
define the rows.

The Random Variables in the Data Matrix

We now introduce for each potential triple a triple node drawn as a diamond-shaped
node in Figure 4.1. The figure shows an example of an RDF graph displaying a so-
cial friendship network in which the income of a person is an attribute. Resources
are represented by circular nodes and triples represented by labeled directed links
from subject node to object node. The diamond-shaped nodes stand for random
variables which are in state one if the corresponding triples exist. Nodes repre-
senting statistical units (here: Persons) have a darker rim. A triple node is in
state one (true) if the triple is known to exist and is in state zero (false) if the
triple is known not to exist. Graphically, one only draws the triple nodes in state
one, i.e., the existing triples.

We now associate some triples with statistical units. The idea is to assign
a triple to a statistical unit if the statistical unit appears in the triple. Let’s

12

FP7 – 215535

Deliverable 1.2.2

consider the statistical unit Jane. Based on the triples she is participating in we
obtain (X, typeOf, Person), (Joe, knows,X), and (X, hasIncome,High) where
X is a variable that represents a statistical unit. The expressions form the random
variables (outputs) and define columns in the data matrix. By considering the
remaining statistical units Jack and Joe we generate the expressions (columns),
(X, knows, Jane), (Jack, knows,X). We will not add (Jane, knows,X) since Jane
considers no one in the data base to be her friend. We iterate this procedure for
all statistical units in the sample and add new expressions (i.e., columns in the
data matrix), if necessary. Note that expressions that are not represented in the
sample will not be considered. Also, expressions that are rarely true (i.e., for few
statistical units) will be removed since no meaningful statistics can be derived from
few occurances. In [34] the triples associated with a statistical unit were denoted
as statistical unit node set , abbreviated as SUNS.

Non-random Covariates in the Data Matrix

The columns we have derived so far represent truth values of actual or potential
triples. Those triples are treated as random variables in the analysis. If machine
learning predicts that a triple is very likely, we can enter this triple in the data store.
We now add columns that provide additional information for machine learning but
which we treat as covariates or fixed inputs.

First, we derive simplified relations from the data store. More precisely, we
consider the expressions derived in the last subsection and replace constants by
variables. For example, from (X, knows, Jane) we derive (X, knows, Y) and count
how often this expression is true for a statistical unit X, i.e. we count the number
of friends of person X.

Second, we consider two simple types of aggregated features from outside a
SUNS. Consider first a binary triple (X, knows, Jane) . If Jane is part of another
binary triple, in the example, (X, hasIncome,High) then we form the expression
(X, knows, Y) ∧ (Y, hasIncome,High) and count how many rich friends a person
has. A large number of additional aggregated features are possible but so far we
restricted ourselves to these two types.

After construction of the data matrix we prune away columns which have ones
in fewer than ε percent of all rows or in more than (1 − ε) of all rows, where ε is
usually a very small number. Thus we remove aggregates features that are very
rarely true or almost always true, since for those no meaningful statistical analysis
is possible. Note that by this pruning procedure we have reduced the exponential
number of random variables to typically a much smaller set.

Algorithms for Learning with Statistical Units Node Sets

A row in the resulting data matrix contains external inputs based on aggregated
information (if available) and typically a large number of binary and sparse out-
puts. A one stands for a triple known to be true and a zero for a triple whose truth
value is unknown. In this situation, multivariate prediction approaches have been
most successful [35]. In multivariate prediction all outputs are jointly predicted
such that statistical strength can be shared between outputs. The reason is that
some or all model parameters are sensitive to all outputs, improving the estimates
of those parameters. The approaches we are employing here are based on a matrix

13

FP7 – 215535

Deliverable 1.2.2

Figure 4.2: Architecture of RDF2Matrix transformer plug-in

Figure 4.3: Architecture of ProbabilisticRDF transformer plug-in

completion of the complete data matrix, including inputs and outputs.1 We inves-
tigate matrix completion based on a singular value decomposition (SVD), matrix
completion based on non-negative matrix factorization (NNMF) [22] and matrix
completion using latent Dirichlet allocation (LDA) [3]. All three approaches esti-
mate unknown matrix entries via a low-rank matrix approximation. SVD is based
on a singular value decomposition and NNMF is a decomposition under the con-
straints that all terms in the factoring matrices are non-negative. LDA is based
on a Bayesian treatment of a generative topic model. After matrix completion of
the zero entries in the data matrix, the entries are interpreted as certainty values
that the corresponding triples are true. After training, the models can be applied
to statistical units in the population outside the sample.

4.2.2 ML-based Transform Plug-ins

Based on the workflow of the SUNS approach described above (see details in [34])
we have designed and developed two Transform plug-ins: RDF2Matrix trans-
former and ProbabilisticRDF transformer. Both are of type of InformationSet-
Transformer and as defined in the LarKC data layer API, they require SetOf-
Statement as input and produce again transformed SetOfStatement as outcome.

1Although the completion is applied to the complete matrix, only zeros —representing triples
with unknown truth values— are overwritten.

14

FP7 – 215535

Deliverable 1.2.2

Their components can be re-used as or within other types of LarKC plug-ins (Sec-
tion 4.2.3). The latter is based on the former. Concretely speaking, the core step
of the ProbabilisticRDF transform, i.e. model learning, needs input data in matrix
form which is produced by the RDF2Matrix transformer.

RDF2Matrix Transformer

Given predefined statistical unit type and population, the plug-in constructs data
matrix by transforming a set of RDF-triples related to statistical units to data
matrix. The rows in the matrix stand for instances of a statistic unit and columns
represent their features derived from the associated RDF graph. The binary entries
one and zero reflex the truth values of the corresponding triples true and unknown
respectively. For example, we have a data set around genetic-variation-relationship
between genomes and diseases. Suppose that rows are genomes and columns are
diseases. An one of the (i,j) entry in the matrix indicates that the i -th gene varies
the j -th disease; otherwise it is unknown whether or not a relationship exists
between that gene and that disease.

Figure 4.2 shows the architecture of RDF2Matrix transformer. Here we see
three components and a configuration. To facilitate the usability of the plugin a
default configuration will be available in an (TXT or XML) property file. However,
user who want to refine the setting of each component has also possibility to set up
the configuration by herself. Now let us look at the components one by one. First,
the Population Creation component interprets the definition of the statistical unit
and population into SPARQL query and executes the query through the LarKC
data layer to collect all statistical units, i.e. URIs of key entities. Second, the
Sampling component follows some sampling strategy to obtain a representative
subset of the population for model training. Finally, the Transformation com-
ponent extracts input and output features based on the sample, removes those
features without significant statistical relevance and afterwards fulfils matrix en-
tries. A great advantage of the SUNS approach is that building matrix is directly
based on data and does not necessarily require ontologies.

ProbabilisticRDF Transformer

The plug-in estimates probabilities of the truth value of triples not present yet
in the triple store and persistently saves those probabilistic triple in some man-
ner, ideally in quads, thereby they can be then retrieved by (extended) SPARQL
queries. The plug-in can be viewed as transform of a conventional triple store into
a probabilistic triple store.

Figure 4.3 shows the architecture of ProbabilisticRDF transformer plug-in. We
can easily see that the first step is to invoke the RDF2Matrix transformer convert-
ing RDF triple stores to a data matrix. In the next step the Learning component
chooses proper algorithm from intern or extern machine learning libraries and
trains models. As shown in the Figure 4.3 there is a kind of connector communi-
cating with external (remote) machine learning libraries if necessary. After having
learnt models, we estimate the truth value of triples of interest. If desired (in the
offline setting), we could add probabilities to original RDF graphs via Probability
storing component, so that we create probabilistic RDF graphs.

15

FP7 – 215535

Deliverable 1.2.2

4.2.3 Reuse of Components

So far we have introduced the basic idea and workflow of the machine learning
approach SUNS and provided an overview of the architecture and main components
of two Transform plug-ins. Now we discuss the reusability of those components.

Population Creation as Identify Plug-in

The definition of the population and the statistical unit could be considered as a
identify step in which a relevant sub-graph of a RDF-graph is extracted containing
key entities under consideration.

Sampling as Select Plug-in

There are many strategies that can be chosen to sample a representative subset
from the population for training with a rational size. The choice depends on the
nature of the data and the target relation to predict.

A simple but mostly used strategy is random sampling. In this case the whole
population is randomly accessible and all instances can be queried directly from
triple stores. Statistical units in the sample for training are randomly sampled and
statements predicted for testing are either other randomly selected statistical units
(inductive setting) or statements concerning the statistical units in the training
sample (transductive setting).

Since the most triple stores are published on the Web, another sampling strat-
egy is link following, i.e. crawling. Assumes that the Web address of one user
(i.e., statistical unit) is known and only a subpart of the data can be collected by
crawling, which is a typical situation on the Web. Starting from this user profile,
the profiles of users connected by certain relationship are gathered by crawling
breadth-first and are then added to the training set. The test set is either the
same as the training set (transductive setting) or gathered by continued crawl-
ing (inductive setting). In this situation, all profiles are (not necessarily directly)
connected and generalization of trained models can be expected to be easier since
local properties are more consistent than global ones.

Learning as Reason Plug-in

What the Learning component of the ProbabilisticRDF transformer dose is noth-
ing else than inductive inference by using machine learning. It materializes then
(selected) learned probabilistic triples in LarKC data layer in offline setting or just
makes estimation of the true value of triples available for online querying.

16

FP7 – 215535

Deliverable 1.2.2

5 Reason Plug-in Type

5.1 Introduction

The purpose of a Reason plug-in in LarKC is to solve (answer) a user’s request
(given in the form of a query) by reasoning over the ontological knowledge pre-
scribed by the ontology passed to the reasoner. More concretely, in LarKC the
user’s request is captured by a SPARQL query which is to be executed by a reasoner
against a set of RDF statements passed as parameters. The result of executing
such query depends on the type of reasoning operation that is invoked and ranges
from a boolean value to a set of variable bindings and includes a set of statements.
In addition to the user’s query and the data to reason over, a Reason plug-in
accepts a contract parameter that defines the behaviour of the reasoner and a
context parameter that enables the communication of the plug-in’s state among
other plug-ins. For further technical details of the Reason interface the reader is
referred to Deliverable D5.3.2 - Overall LarKC Architecture and Design [11].

This section is concerned with identifying the key components that constitute
a reasoner and different possibilities of reusing such components in other plug-ins
or, reusing other plug-ins and components of the LarKC platform for the design
of Reason plug-ins. In particular, Section 5.2 describes the design of a rule-based
reasoner. Section 5.3 introduces a framework for studying anytime reasoning by
ontology approximation systematically through the specification of three indepen-
dent components. Such framework is specified by a 3-step workflow consisting of a
number of independent modules, which can be instantiated for different reasoning
tasks and approximation strategies. The crucial elements of this workflow are sep-
arate modules for approximation, reasoning and evaluation. After the introduction
of this framework we present three concrete ideas on how this 3-step workflow can
be realized in the LarKC platform. This includes the description of a single Reason
plug-in that implements parts of the aforementioned framework and the descrip-
tion of two LarKC workflows for anytime reasoning by ontology approximation.
In every case we highlight the main components and discuss different possibilities
of reuse. Section 5.4 describes the design of different variants of a LarKC Reason
plug-in that is capable of reasoning with inconsistent ontologies through the use of
the PION reasoner, a system for interleaving reasoning and query-based selection
for reasoning with inconsistent ontologies.

5.2 Rule-based reasoner

Rule-based reasoning involves the application of rules to infer knowledge. Ull-
man [37] defines the set predicates whose relations are stored in the knowledge
base to be the extensional database. Whereas the set of predicates whose contents
are defined in terms of logical rules form the intensional database. This distinction
becomes blurred when logical rules exist that infer new tuples for extensional pred-
icates. Therefore, it is generally clearer to discuss ground statements, that exist
explicitly within the knowledge base and inferred statements that can be deduced
with the combination of ground statements and the logical rules.

17

FP7 – 215535

Deliverable 1.2.2

A rule can be considered as a simple IF ... THEN ... statement, i.e. if a
conjugation of atomic statements in the body of the rule are considered true in
the model for the knowledge-base then the rule allows for the corresponding head
of the rule can also be considered true.

One rule-based formalism that has been thoroughly analysed is Datalog [36],
which was originally developed as a database query and rule language. Datalog
is based on a simplified version of the Logic Programming language Prolog. The
intention was for a rule-system capable of processing large amounts of data from
relational databases. Several relevant complexity results of Datalog in regard to
query answering have been derived. Querying a static knowledge base in general
has polynomial time complexity, but is exponential otherwise [8].

Datalog has a wide variety of applications and can be used for reasoning with
other formalisms, including: Description Logic Programming (DLP) [13], language
variants from the WSML family [7] and RDF [21]. Disjunctive Datalog, which
allows disjunctions in the head of a rule can be used to reason with an even larger
subset of OWL DL [17].

Rule-based reasoning has a particular place in LarKC due to the early decision
to design the LarKC platform as a SPARQL endpoint. Many of the languages
whose formalisms are based on or have an RDF serialisation can have their se-
mantics expressed using rules. This includes RDF and RDFS [28] and the OWL 2
profile OWL2 RL [25]. Interestingly, work on the langauge ELP [20] (a hybrid of
DLP [13], EL++ [2] and several OWL2 profiles) has shown that the semantics of
more expressive description logics can be adequately represented using rules. In-
deed, ELP captures that semantics of OWL2 EL, QL and RL, using a polynomial
time algorithm to translate the knowledge base to Datalog.

Very broadly speaking, there are two categories of approaches to reasoning with
rule-based formalisms. The first approach is to compute all of the inferences that
can be made using the ground statements and logical rules, which uses the rules in
a forward chaining manner and hence is often called ‘bottom-up’. The result is a
minimal model, which contains all statements that are considered true in any valid
model of the knowledge base. This process is often called ‘materialisation’. The
main advantage of this approach is that once computed, the query answering over
the minimal model is extremely fast. All that is required is to make a join over
each atomic formula in the conjunctive query. However, a major disadvantage
with this approach is that the computation can take a very long time for large
knowledge bases and the resulting model might be so large that it will not fit in
to available storage systems. Furthermore, the technique does not permit (or at
least makes it much more difficult) modifications to the extensional database, i.e.
the addition or retraction of ground statements.

The second category of reasoning approaches, often called ‘top-down’ uses the
logical rules in the reverse direction, i.e. using the rules in a backward chaining
manner. The intention here is to compute only those inferences that will be used to
answer a query. The advantage is that potentially far less computation is required
and modifications to the extensional database can be made without having to
recompute the entire minimal model.

In reality, a whole range of variations, combinations and optimisations of these
two categories of approaches exist, each with their own set of advantages and
disadvantages.

18

FP7 – 215535

Deliverable 1.2.2

5.2.1 Rule-based reasoner LarKC plug-in

Rule-based reasoning in the context of the RDF based languages typically involves
a rule-set that is applied directly to the RDF triples. Examples of such rule-sets
are the RDF and RDFS entailment rules, OWL2 RL and OWL Horst [33] being
the default rule-set of OWLIM [19] 1.

For an example, rule ‘cax-eqc1’ from the OWL2 RL entailment rule set is
defined as follows:

T (?c1, owl : equivalentClass, ?c2) ∧ T (?x, rdf : type, ?c1)→ T (?x, rdf : type, ?c2)

In plain language, if two classes are equivalent then any member of one class
is a member of the other.

The first prototype rule-based reasoner in LarKC uses the IRIS [18] reasoner
for its underlying inference engine. Further designs and implementation will lead
to a rule-based reasoner for approximate and possibly parallel reasoning.

The prototype rule-based reasoner uses several mechanisms for applying a rule-
set directly to the RDF triples. In the context of LarKC, a reasoner accepts a
stream of input triples from a previous plug-in (typically a selection component)
along with a SPARQL query. The output of the reasoner is then a standard
SPARQL result: variable binding for a ‘select query’, triples for a ‘describe’ or
‘construct’ query and a boolean result for an ‘ask’ query. Various configuration for
the internal of a rule-based reasoner plug-n are imagined, but for now, a description
of the prototype plug-in is given.

The reasoner plug-in is instantiated with the SPARQL query that needs to be
evaluated and the rule-set to be used for inference. Neither of these two inputs
are allowed to change during the execution of the plug-in and its owning work-
flow. During workflow execution, collections of input triples are delivered to the
reasoner plug-in by the LarKC platform and supporting components. The data
structures for holding RDF statements defined in the LarKC data layer have been
carefully designed such that any class that directly or indirectly holds statements
implements a common interface, namely ‘SetOfStatements’. This common inter-
face allows the input RDF statements to be processed no matter if they are a
simple set, a data set, a labelled set or some other data structure.

During each invocation of the reasoner, a collection of RDF statements is taken
from the input queue and passed to the reasoner. The IRIS rule-based reasoner
plug-in uses these statements and the initial rue-set to perform forward chaining
with query answering to generate the query result. The rules are Datalog compati-
ble and can be applied to a relation of ternary tuples, in this case RDF statements
or triples. At each iteration, the input RDF statements, the rule-set and the user
query are provided to the IRIS reasoner and a complete reasoning/query-answering
step is completed using a new knowledge base. For the longer term, such a pro-
cess does not scale well and a better system for enabling knowledge base updates
is planned (it is not considered necessary to implement any kind of retraction
mechanism at this stage).

1http://www.ontotext.com/owlim/index.html

19

FP7 – 215535

Deliverable 1.2.2

5.2.2 Reuse of sub-components for reasoning

All reasoning systems require the use of a wide range of algorithms and data-
structures. Tuples are stored in relations and relations must be indexed to allow
tuples to be quickly found, iterated and accessed. For reasoning with formalisms
that have an RDF serialisation, there is conceptually a single relation that holds all
of the RDF triples (arity 3 tuples) and the logical rules that capture the semantics
of the language operate directly on this single relation.

For example, in simple forward chaining mode, IRIS examine the logical rule
set and for each rule it will set up and evaluation scheme and indexing specific to
the rule, e.g. in the following rule:

p(?x, ?y) : −q(?x, ?w, ?z), r(?w, ?z, ?y).

IRIS will set up an evaluator for the natural join that occurs between predicates
‘q’ and ‘r’ using the variables ‘w’ and ‘z’ and will use the bindings for variables
‘x’ and ‘y’ to populate the rule head. For this example, the join can be achieved
by iterating through every tuple in the relation for ‘p’, using the second and third
terms as values for ‘w’ and ‘z’ and using these values to find matching tuples in
‘r’, thus requiring a compound index on the first and second terms of the relation
for ‘r’.

The disadvantage here, as for any rule-system that computes a minimal model
using forward chaining, is that the model may be very large and its computation
intractable. Indeed, this is expected to be the case for most use-cases of LarKC.
However, the design of the LarKC platform allows for this drawback to be miti-
gated and potentially even turned to an advantage. The important characteristic
is ‘anytime’ behaviour, where algorithms are able to return a partial answer, whose
quality depends on the amount of computation time they were allowed. The result
of an anytime algorithm is an approximation of the full answer.

Taken together, forward chaining and anytime behaviour allow for a fast initial
response to a query, with the ability to provide better quality answers over time.
As we have seen already, selection components attempt to speed up inference
by selecting a subset from all of the available information and using this subset
as input to the inference stage. This has been explored not just for scalability
purposes, but also as a means to tackle inconsistency (see D4.3.1 - Strategies and
Design for interleaving reasoning and selection of axioms).

As well as doing selection before reasoning, including a selection step as part
of reasoning itself will allow a marked increase in performance for anytime, rule-
based, approximate reasoning. Consider the rule given in the example above. To
evaluate this rule in a forward chaining algorithm requires the processing or the
entire set of input data. In the LarKC case, this is expected to number in the tens
of billions of statements and even on high performance hardware, this computation
could easily require hours to complete. The fundamental algorithm required for
rule-based reasoning is the ability to execute joins as described above and joins
require indexes in order to efficiently find tuples that match is separate relations.
However, if selection components (based on user context, statistics, heuristics, etc)
are fine-grained enough, then these could be substituted for or used in conjunction
with indexes, which would allow faster traversal of relations with the expectation
that the initial results would be more likely to satisfy the user. This in turn would
mean that the workflow could be terminated earlier.

20

FP7 – 215535

Deliverable 1.2.2

Therefore, future research activity in LarKC will focus on a more fine-grained
integration of selection and reasoning, which can not be achieved at the moment
using plug-in wrappers around existing third party components. Instead, reason-
ers will need to be thoroughly re-examined and a new LarKC prototype reasoner
will use selection components for indexes that will speed up inference and simul-
taneously improve the quality of the initial output. Such behaviour will lead to
earlier termination of workflows and hence earlier user satisfaction.

5.3 Anytime Instance Retrieval by Ontology Approximation

The need for approximation on the Semantic Web raises the challenge to develop
algorithms for anytime Semantic Web reasoning, and several attempts have been
made to find suitable approximation strategies and study their effects in practice
[32, 12, 31, 38]. Until now, this work has been limited in scope, has had a rather
ad-hoc character (lacking a general framework for theory and application), and
most importantly, results have often been inconclusive and show a need for a
more thorough experimental analysis. A systematic evaluation of strategies and
heuristics is challenging, and the results until now have been difficult to reproduce
and compare.

This section, first introduces a framework for testing approximation algorithms
systematically that will make the development of such methods easier, and thus
increase their chances of adoption and deployment (see Section 5.3.1). To this end,
we design a workflow consisting of a number of independent modules, which can
be instantiated for different reasoning tasks and approximation strategies. The
crucial elements of this workflow are separate modules for approximation, reason-
ing and evaluation. The first allows implementing approximation strategies by
subset selection (eg. subsets of axioms, or of vocabulary), the second allows to
specify a specific reasoning task (eg. instance retrieval, ontology classification, or
consistency checking), and the final module allows to implement a suitable evalua-
tion metric. This 3-step workflow has been realized into a workbench for studying
anytime instance retrieval by ontology approximation. Both, the workbench and
the results of our experiments are publicly available online 2.

After introducing the 3-step workflow for studying approximate reasoning we
present and discuss three concrete ideas on how this 3-step workflow can be realized
in the LarKC platform. First, section 5.3.2 introduces the overall design of a
LarKC Reason plug-in that implements part of the 3-step workflow. Such plug-
in is described in terms of its constituent components and their functionality.
Then, in Section 5.3.3 we present and discuss two alternative LarKC workflows
that combine several plug-in types in order to realize our framework for anytime
approximate reasoning in LarKC. The purpose of this analysis is to identify the
main components that constitute an approximate reasoner and to identify points
of reuse in the design of LarKC plug-ins and workflows.

2http://www.few.vu.nl/~gtagni/aboxreasoning/

21

FP7 – 215535

Deliverable 1.2.2

5.3.1 A Framework for Anytime Reasoning by Ontology
Approximation

Our framework consists of a pipeline of three steps (see Figure 5.1), resulting in
a new type of gain diagrams. These three steps allow to define (i) the particular
approximation heuristic to be used, (ii) the reasoning task to which it should be ap-
plied, and (iii) the definition of a performance measure for evaluating the heuristic.
This section describes each of these steps and the resulting gain diagrams.

Ontology

Approximation
Method

Selection
Strategy

Reasoner Reasoning
Task

Performance
Measures

Approximation Step

Reasoning Step

Evaluation Step

Approximated
Ontologies

Approximation
Results

Measured
Parameters

+

Pain/Gain
Diagrams

Figure 5.1: 3-step workflow for approximate reasoning experiments; every square
box can be changed per experiment

Approximation step

The foundational results from [30] show that performing an approximate reasoning
tasks on a logical theory can be transformed into executing a classical reasoner on
a suitably approximated theory. Hence, the purpose of the approximation step is
to take an ontology O and to return a sequence of approximations O1, O2, . . . , On.
Very often, such approximations can be phrased in terms of a selection method,
operating on either the symbols appearing in an ontology (vocabulary selection),
or on the set of axioms in an ontology (axiom selection), operating on either or
both of the A-box and T-box of the ontology. The approximation component
does not depend on a particular strategy: the only requirement is that for a
given ontology, this module returns a sequence of approximations. Although our
framework imposes no further constraints on the approximation step except that it
produces ontologies that can be used in the reasoning step, some formal properties
of such selection steps are desirable. Let O∗ denote the semantic closure of an
ontology, ie. all facts that can be derived according to its semantics. We then

22

FP7 – 215535

Deliverable 1.2.2

have soundness if each O∗i ⊆ O∗, ensuring that the approximate results are correct
(although possibly incomplete); monotonicity if O∗i ⊆ O∗i+1 for all i = 1, . . . , n− 1,
ensuring that the successive approximations get more correct; and completeness if
O∗ = O∗n, at which point the approximation has reached perfect quality.

Reasoning step

Approximation can be applied to different reasoning problems such as Instance
Retrieval or Classification. All that our framework requires is that the reasoning
step takes as input an ontology, and returns answer-sets. These answer sets could
be instance-class memberships (for instance retrieval) or class-class subsumptions
(for classification). It is these answer-sets that determine the quality of the ap-
proximation, and the computational efforts which determine the price one has to
pay.

Analysis step

In the analysis step of our framework we specify the notions of success and costs.
These performance measures can be eg. the standard notions of recall (the number
of retrieved facts in relation to all possible findings), or precision (the correctness
of the given answers), or some more non-standard notion of semantic proximity
of the approximate answers to the perfect answers. More generally, we propose a
notion of gain, which abstracts over the detailed measures and describes the re-
sults as ratios between possible and actual findings. Pain is the orthogonal notion
describing the ratio between the costs of reasoning over an approximate ontology
versus the non-approximate one. For specific examples of pain one could think
of costs in terms of runtime or other computational resources, such as memory,
user-interaction, database access, etc.

Gain-Pain diagrams: Obviously, we are interested in whether the gain (success-
ratio of current answers against perfect answers) outweighs the pain (cost-ratio of
current answers against perfect answers), in other words in the gain-pain differ-
ence. This ratio is plotted in our gain-pain diagrams which show at which point
of the anytime computation the gain outweighs the pain (or not, as the case may
be, and by how much). Figure 5.2 illustrates these measures. As the quality of the
approximation increases along the x-axis from 0− 100%, in this example the gain
increases linearly while the pain increases much more slowly initially, and rises
more sharply in the final 20%. The combined performance measure (pain-gain
curve) is calculated as the difference between these two, with the best perfor-
mance achieved at about 75% of the approximation where the proportional gain
maximally outweighs the proportional pain.

The ideal gain-pain curve rises sharply for the initial approximations of the
input representing the desired outcome of a high gain and low pain in the early
stages of the algorithm. Although such a convex gain-curve is the most ideal, even
a flat gain curve at y = 0 is already attractive, because it indicates that the gains
grow proportionally with costs, giving still an attractive anytime behaviour.

Notice that gain-curves always start in (0, 0), since for the empty input both
gain (e.g. recall) and pain (e.g. runtime) are 0, hence their difference is 0. Gain

23

FP7 – 215535

Deliverable 1.2.2

-100

-50

0

50

100

0 20 40 60 80 100

gain
pain

gain-pain

Figure 5.2: gain, pain and gain-pain curves

curves always ends in (100, 0), since for the final perfect approximation both recall
and runtime are 100%, hence their difference is again 0. Also notice that gain-pain
curves can be negative when the proportional pain outweighs the proportional gain
for certain approximations.

5.3.2 Approximate Reasoning Plug-in

The simplest way to implement the 3-step workflow for approximate reasoning
in LarKC is as a single LarKC reason plug-in. The modular design of this plug-
in allows for changing some of its components and replacing them with other
implementations of the same component. For example, the approximation module
is an interface that can be instantiated by different classes allowing us in this
case to experiment with multiple approximation methods. The same holds for
the selection module which allows us to plug different components implementing
different selection strategies.

In the following we will discuss the overall design of a LarKC plug-in that
implements an anytime, approximate reasoner that implements part of the func-
tionality provided by the workbench described above. Figure 5.3 depicts the over-
all architecture of our anytime approximate reasoner plug-in illustrating the its
components.

Approximation Component This module implements the approximation step
of the 3-step workflow for anytime approximate reasoning presented above. Given
an ontology this modules returns a set of approximated ontologies. More specifi-
cally, this modules defines an interface for approximating ontologies. The interface
can be instantiated by different approximation classes each of which implements a
specific approximation method. In the current implementation the approximation
component takes as input an OWL ontology and returns a sequence (possibly a
singleton) of approximated ontologies by selecting a subset of the ontology’s vo-
cabulary (atomic concept names) and rewriting the set of terminological axioms
according to the approximation method described in [30]. The approximation

24

FP7 – 215535

Deliverable 1.2.2

Approximation
Module

Selection
Module

Results
Manager

Input/Output Manager

DL Reasoner

Reason Plug-in API

DL Reasoner DL Reasoner. . .

Figure 5.3: Architecture of a reason plug-in in LarKC implementing the 3-step
workflow introduced above

module also provides a way to produce incremental approximations of an ontology
whereby given an initial ontology it returns a sequence of approximated ontologies
(T-boxes) each of them based on an incremental subset of the vocabulary of the
ontology. For example, given ontology O = (T,A) the module is able to produce
10 different approximations (Ti, A) where each Ti is an approximated T-box based
on 10% of the vocabulary of the ontology. The current implementation of this
module approximates only the terminological part of an ontology leaving the as-
sertional part intact. However, it is possible to replace this component by one that
approximates both the terminological and the assertional parts of an ontology.

Selection Component The selection component of this plug-in refers to the
selection step in the 3-step workflow presented above. This component is imple-
mented as an interface that defines the basic functionality that must be provided
by every selection strategy. For the purposes of approximate reasoning we have
defined two additional sub interfaces. The first one, a vocabulary selection strat-
egy interface, defines the common functionality provided by methods that return
a subset of the vocabulary of the ontology. The second one, an axiom selection
strategy interface, specifies the minimal functionality that must be provided by
methods that return a subset of the set of terminological axioms defined in the on-
tology. A selection module takes an ontology as input and returns either a subset
of the vocabulary of the ontology (vocabulary selection strategies) or a subset of
the terminological axioms defined in the ontology (axiom selection strategies).

In the current implementation of our workbench we have implemented six vo-
cabulary selection strategies which in the context of this plug-in these selection
strategies are to be implemented as six different selection modules. In the follow-
ing we describe briefly each of the selection strategies.

• Random (R): This function randomly selects a set of atomic concept names
from the ontology’s vocabulary set.

25

FP7 – 215535

Deliverable 1.2.2

• Most Referenced (MR): This function selects concept names according to the
number of times they are appear in terminological axioms.

• Most Members (MM): This function selects atomic concept names based on
the number of instances they have. At each approximation step concepts
are sorted according to the number of instances that were retrieved in the
previous step. In case there is no feedback from the previous reasoning
step concepts are sorted according to the Most Referenced strategy. The
rationale behind this strategy is to select as early as possible those concepts
that can produce the largest number of instances, thus producing the greatest
increase in recall. The main disadvantage of this strategy is that concepts
must be sorted at each step of the approximation process. In addition to
this, the strategy must be combined with another strategy to produce an
initial ordering.

• Restriction Class (RC): This function gives higher priority to the fillers of
quantified concept expressions and to their respective sub concepts. If the
number of such elements is less than desired number M the additional con-
cepts are chosen based on the number of instances asserted in the assertional
part of the ontology. The rationale of this strategy is that property restric-
tions are used for defining classes implicitly. Consequently, these classes may
contribute to retrieving a large number of instances. The main disadvatange
of this strategy is that not every class in an ontology is defined through
property restrictions, a characteristic that makes this strategy incomplete.
Therefore, as with the previous strategy this one needs to be complemented
with another strategy for selecting classes that are not defined through prop-
erty restrictions.

• Most Direct Subclasses (MDS): This function selects atomic concepts based
on the number of direct subclasses they have. The first time this strategy is
used, atomic concepts are sorted in decreasing number of direct subclasses
and each successive call to this function returns the next set of concepts. As
with the Most Referenced strategy concepts can be sorted only once at the
beginning of the anytime reasoning process.

• Least Direct Subclasses (LDS): This function is the opposite of the MDS
function. The rationale for this strategy is that concepts with the least
number of subclasses are more specific and tend to be used to annotate large
number of individuals.

Input Manager This component is responsible for splitting the ontology into
its terminological and assertional parts. This is required since the current imple-
mentation approximates only the terminological part of an ontology. An advantage
of separating the terminological from the assertional part is that this allows the
approximate reasoner to combine a single terminology with multiple pieces of in-
stance data.

Reasoner Although the reasoner component could be built-in into the approxi-
mate reasoner plug-in we have decided to leave it outside the reasoner. The main

26

FP7 – 215535

Deliverable 1.2.2

advantage of doing so is that it allows us to (re)use multiple standard DL reason-
ers. In the current design access to DL reasoners is accomplished through either
the OWLAPI or the OWLLink interfaces.

Using the context parameter of the Reason interface it is possible to invoke
the approximate reasoner and request to answer the same query using different
approximations of the same ontology. A decider, or the end-user application,
would invoke the reasoner providing a SPARQL query and a data set. The reasoner
would then solve the query by using an approximated ontology as computed by
the approximation module and return the results back to a LarKC Decider or
user application. In case further reasoning is required the approximate reasoner
could be invoked again with the same query and the same input ontology. This
time, the reasoner would approximate the ontology using a bigger subset of the
vocabulary and the solve the query using this new approximated version of the
ontology. The context parameter in the Reason interface could be used to keep
state-related information between calls to the reasoner, for example, to control the
size of the subset of the vocabulary upon which the next approximation should be
computed.

5.3.3 Reuse of sub-components for Anytime Approximate
Reasoning

The previous section described the overall architecture of a LarKC Reason plug-in
that implements part of the functionality provided by the 3-step workflow intro-
duced above in terms of a series of modular components for selection, approxima-
tion and reasoning. Although the plug-in’s architecture is rather simple, with only
three main (sub)components, it highlights several points of reuse. In the follow-
ing we will identify these points and discuss how to implement the functionality
provided by the approximate reasoning plug-in as a LarKC workflow using several
plug-in types.

• Approximation as Transformation plug-in: An InformationSetTransformer
plug-in takes as input an InformationSet, eg. the URL of an OWL ontology,
and returns a (transformed) version of the input InformationSet. One pos-
sible implementation of such interface could return an approximated version
of the input ontology, i.e. the transformation step consists in approximating
the ontology. Note that this is literally the case of our approximate reasoner
as the approximation of an ontology is defined in terms of rewriting the ter-
minological axioms of the ontology based on a subset of the vocabulary. Such
a transformer plug-in would only have to invoke the specific selection method
and allow for context information to be passed to it in order to implement
incremental subsetting of the vocabulary.

• Approximation as Selecter plug-in: Another possibility is to implement the
approximation module as an instance of a Selecter plug-in interface. In this
case, the input parameter of type SetOfStatements represents the ontology
that needs to be approximated. The plug-in’s output (of type SetOfState-
ments) represents the approximated version of the input ontology. As with
the Transformation-based approximation discussed above, a selection plug-in
would have to invoke a specific selection method to select the subset of the

27

FP7 – 215535

Deliverable 1.2.2

ontology’s vocabulary or, alternatively, each selection strategy could be im-
plemented as a different selection plug-in that not only implements a specific
selection function but also approximates an ontology based on this selection
method. The selection plug-in should also be able to accept context infor-
mation that allows the client class to pass state-related information, eg. the
percentage of vocabulary that must be selected in the current call.

• Selection as Selecter plug-in: In case the approximation of an ontology is
based on selecting a subset of the terminological axioms of the ontology the
selection module’s functionality could be implemented by a Selecter plug-in.
Such plug-in would return a SetOfStatements representing a subset of the
terminological axioms. Different axiom selection strategies could be imple-
mented by different instances of this Selecter interface.

• Reasoning Component as Reason plug-in: An obvious point of reuse in our
approximate reasoning plug-in is the use of a reasoner component. The func-
tionality of such module could easily be implemented by a separate LarKC
plug-in that provides alternative reasoning capabilities in terms of expres-
sivity, computational resources, reasoning paradigm, etc. In particular, for
the implementation of our reasoner we are planning to use standard DL rea-
soners and access them through the OWL API and OWLLink plug-ins that
provide a wrapper component over existing OWL reasoners.

Two Workflows for Anytime Approximate Reasoning

Figure 5.4 depicts a LarKC workflow for studying anytime reasoning by ontology
approximation. The workflow consists of four plug-in types. The Identify plug-in
is responsible for identifying the data over which reasoning will be done to answer
a given query. The Selecter plug-in receives the ontology identified by the previous
plug-in and returns an approximation of that ontology. Depending on the desired
selection strategy and approximation method different instances of this plug-in
will be invoked and executed. Once the Selecter plug-in computes the approxi-
mated version of an ontology an appropriate Reason plug-in can be invoked with
the approximated ontology and original query as parameters. Here, the selection
of the reasoner may depend on many factors such as QoS parameters. The Reason
plug-in is responsible for answering the given query using the given approximated
ontology. The specific instance of this plug-in type could be one that invokes an
external DL reasoner through the OWL API paradigm or OWLLink protocol. The
last component of the workflow is a emphDecider plug-in. The Decider is respon-
sible for controlling the execution of the workflow and deciding whether further
approximation must be done in order to produce more accurate results. For this,
the decider must be capable of keeping track of the state between multiple invoca-
tions to the selection plug-in. This information is part of the context information
that is passed to the Selecter plug-in in each invocation and could include the
percentage of vocabulary to be chosen in the current approximation step.

One way the Decider could determine whether to use another approximated
version of the ontology could be by analyzing the data obtained from the Gain-Pain
diagrams produced by the Evaluation step of the 3-step workflow for approximate

28

FP7 – 215535

Deliverable 1.2.2

reasoning, assuming the Decider (or any other component in the LarKC workflow)
implements the metrics for evaluating the results returned by the reasoner.

Selecter

Decider

ReasonerIdentify

Figure 5.4: LarKC workflow for anytime reasoning by ontology approximation
using a Selecter to approximate ontologies

Figure 5.5 illustrates the overall design of a second LarKC workflow where the
Selecter plug-in has been replaced by a InformationSetTransformer plug-in that is
responsible for approximating a given ontology. As in the previous case, different
approximation methods and selection strategies could be implemented by different
InformationSetTransformer plug-ins.

InformationSet
Transformer

Decider

ReasonerIdentify

Figure 5.5: LarKC workflow for anytime reasoning by ontology approximation
using a Transformer to approximate ontologies

5.4 Reasoning with Inconsistencies in PION

Re-using and combining multiple ontologies on the Web is bound to lead to incon-
sistencies between the combined vocabularies. Even many of the ontologies that
are in use today turn out to be inconsistent once some of their implicit knowledge
is made explicit. The classical entailment in logics is explosive: any formula is
a logical consequence of a contradiction. Therefore, conclusions drawn from an
inconsistent ontology by classical inference may be completely meaningless. That
appeals for a system which can reasoning with inconsistent ontologies and return
meaningful answers.

In [14], we develop a general framework of reasoning with inconsistent ontolo-
gies, in which relevance based selection functions are used to obtain meaningful
answers, where the meaningfulness is interpreted as the answer is supported by
a selected consistent sub-ontology of the inconsistent ontology, and its negative

29

FP7 – 215535

Deliverable 1.2.2

answer is not supported. The main idea of the framework is: given a selection
function, which can be defined on the syntactic or semantic relevance, we select
some consistent sub-theory from an inconsistent ontology. Then we apply standard
reasoning on the selected sub-theory to find meaningful answers. If a satisfying
answer cannot be found, the relevance degree of the selection function is made
less restrictive thereby extending the consistent sub-theory for further reasoning.
Namely, a system for reasoning with inconsistent ontologies is designed to be one
which make a processing of interleaving reasoning and selection.

PION is a system of interleaving reasoning and query-based selection for rea-
soning with inconsistent ontologies3. In PION, selection functions play the main
role for query-based selection. The selection function can either be based on a
syntactic approach, like Chopra, Parikh, and Wassermann’s syntactic relevance [6]
and those in PION[14], or based on semantic relevance like for example in com-
putational linguistics as in Wordnet [4] or based on semantic relevance which is
measure by the co-occurrence of concepts in search engines like Google[15].

In PION, selection functions are designed to query-specific, which is different
from the traditional approach in belief revision and non-monotoic reasoning, which
assumes that there exists a general preference ordering on formulas for selection.
Given a knowledge base Σ and a query φ, a selection function s is one which returns
a subset of Σ at the step k > 0. Let L be the ontology language, which is denoted
as a formula set. A selection function s is a mapping s : P(L) × L × N → P(L)
such that s(Σ, φ, k) ⊆ Σ.

A selection function s is called monotonic if the subsets it selects monoton-
ically increase or decrease, i.e., s(Σ, φ, k) ⊆ s(Σ, φ, k + 1), or vice versa. For
monotonically increasing selection functions, the initial set is either an emptyset,
i.e., s(Σ, φ, 0) = ∅, or a fixed set Σ0. For monotonically decreasing selection func-
tions, usually the initial set s(Σ, φ, 0) = Σ. The decreasing selection functions
will reduce some formulas from the inconsistent set step by step until they find a
maximally consistent set.

Traditional reasoning methods cannot be used to handle knowledge bases with
large scale. Hence, selecting and reasoning on subsets of Σ may be appropriate
as an approximation approach with monotonically increasing selection functions.
Web scale reasoning on a knowledge base Σ can use different selection strategies to
achieve this goal. Generally, they all follow an iterative procedure which consists
of the following processing loop, based on the selection-reasoning-decision loop
discussed above:

1. select part of the knowledge base, i.e., find a subset Σ′i of Σ where i is a
positve integer, i.e., i ∈ I+;

2. apply the standard reasoning to check if Σ′i |= φ;

3. decide whether or not to stop the reasoning procedure or continue the rea-
soning with gradually increased selected subgraph of the knowledge graph
(Hence, Σ′1 ⊆ Σ′2 ⊆ ... ⊆ Σ).

Monotonically increasing selection functions have the advantage that they do
not have to return all subsets for consideration at the same time. If a query can

3http://wasp.cs.vu.nl/sekt/pion

30

FP7 – 215535

Deliverable 1.2.2

Figure 5.6: Architecture of the PION Reason Plug-in

be answered after considering some consistent subset of the knowledge graph KG
for some value of k, then other subsets (for higher values of k) don’t have to be
considered any more, because they will not change the answer of the reasoner.

The general scenario of interleaving reasoning and selection for PION is shown
in Figure 5.6. Namely, the system replies on a decider to manipulate a selecter
for selecting some relevant axioms and call a reasoner for standard reasoning over
semantic data. A PION system can deal with both consistent ontologies and incon-
sistent ontologies. At the beginning step of interleaving process, the system first
checks whether or not the targeted ontology data are consistent. If the ontology is
consistent, then the system would use the reasoner to make the standard reason-
ing without the non-trivial interleaving processing. If the ontology is inconsistent,
then the system will start the interleaving processing for selection and reasoning.

There are various scenarios of interleaving reasoning and selection for PION
with the LarKC platform.

• DIGPION. DIGPION is one in which an external PION reasoner is called
via the DIG interface plug-in inside the LarKC platform. The main advan-
tage of DIGPION is that we can rely on an externally implemented PION
system for interleaving reasoning and selection with the LarKC Platform.

• SimplePION. SimplePION is one in which PION is implemented as a plug-
in with some simplified functions, which include the support of standard
boolean answers (i.e., either ”true” or ” false) without using the three-valued
answers such as ”accepted”, ”rejected”, and ”undertermined”, which has
been proprosed in [14].

• PIONwithStopRules. PIONwithStopRules is one in which PION uses
some stop rules to decide when it would stop the selection and jump to
provide its reasoning result. The idea of using stop rules is inspired by the
investigation of huamn and animal search strategies in Biology and Cognitive
Science. As discussed in LarKC deliverable D4.2.2[23], knowing when to
stop is one of the most fundamental problems when engaging in any type
of activity. Most real-world problems do not have a pre-defined completion

31

FP7 – 215535

Deliverable 1.2.2

Figure 5.7: PIONWorkflow

criterion. The problem of search termination resurfaces in an aggravated
form when a system faces more than a single problem at once. When time
and effort need to be allocated to multiple tasks finding the right moments
to switch between tasks constitutes a difficult optimization problem. The
interleaving framework can be considered as a processing which switches the
tasks of reasoning and selection.

• PIONWorkflow. PIONWorkFlow is one in which PION is designed as a
workflow which use selection plug-ins and reasoner plug-ins, as shown in
Figure 5.7. At the beginning of the PION workflow processing, the decider
first checks if the the ontology is consistent. If the ontology is consistent,
then the decider will start the standard reasoning processing, namely, use
the standard OWLAPI reasoner to obtain the result. If the ontology is
inconsistent, then the decider will start a non-standard reasoning processing,
namely an interleaving processing. The main advantage of the scenarios of
PIONWorkflow is that this approach provides the possibility to use various
selecters and reasoners which have been implemented independently from
the interleaving framework.

All of those variant plug-in/workflows of PION are designed for the reusability
with the LarKC platform. They can be used to serve as a reasoner which can
deal with both consistent and inconsistent ontologies, although using a PION
reasoner plug-in/workflow for reasoning over consistent ontology would lead to
more overheading in the interleaving processing. The DIGPION scenario can be
used to gain the full functionality support from the existing popular ontology
reasoners such as RacerPro, FACT++, and KAON2. The SimplePION plug-in
can be used to gain the basic support from the build-in OWLAPI reasoner for
reasoning over OWL data. The PIONwithStopRules plug-in is expected to be
used for dealing with large scale data with some loss of the expected answers.
The PIONWorkFlow provides the possibility to use different selection plug-ins
and reasoner plug-ins for the interleaving processing.

32

FP7 – 215535

Deliverable 1.2.2

6 Design Patterns

6.1 Introduction

A design pattern is a general reusable solution to a commonly occurring problem
1. According to [9], to be useful, a pattern should clearly specify the problem(s)
which it can solve and the context in which such problems arise and in which
the solution is recommended. In addition, it should contain best practices and
guidelines to document the most important aspects which ensure a high quality
of the artefact (or system) to be built. A good pattern must achieve the optimal
balance between generality and applicability; the idea expressed in a pattern should
be general enough to be applied in various settings, but still specific enough to
provide effective support.

Patterns are important in LarKC at the conceptual and engineering levels. The
engineering of the LarKC platform can make use of various types of patterns at
analysis, design, implementation and testing time.

In the scope of WP5 The Collider Platform, different design patterns have been
identified as a result of the analysis of performance and scalability of the LarKC
platform architecture and current prototype implementations. These design pat-
terns are modelling the features of different kind of LarKC workflows, which may
present some limitations on performance and scalability, under certain deployment
conditions, and specifying concrete requirements with regards to performance and
scalability improvement. The patterns are proposing solutions to the identified
problems through the application of different techniques in the implementation,
deployment and execution of the workflows (such as parallelization, distribution
and remote execution, data partitioning, etc.). The definition of each pattern is
illustrated with one or more examples of concrete LarKC use cases. Each patterns
proposed solution will therefore be applicable to similar situations than the given
examples.

According to [9], a pattern describes a proven and tested solution to a common
problem within a specific context. However, it is possible to describe yet non-
tested ideas in the form of a pattern. The owner of the term pattern language,
the architect Christopher Alexander [5], associates a rating to each pattern to
indicate how well they are proven in real-world examples. It must be noted that
the definition of the design patterns described in this section is still in a preliminary
stage and its application to real-world examples (in our case, LarKC use cases) is in
progress. The design patterns descriptions will evolve as the tests are progressing
on concrete LarKC use cases. It is also possible that new patterns are identified.
Updates will be reported in future WP1 and WP5 deliverables.

The description of the design patterns within this deliverable is structured as
follows:

• Pattern name: meaningful name which identifies the pattern

• Context: description of the situation where the problems and proposed so-
lutions apply

• Problem: description of the problem which the pattern intends to solve

1http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

33

FP7 – 215535

Deliverable 1.2.2

• Solution: proposed solution to the above described problem, according to
the concrete context conditions

• Examples: real-world examples in which this pattern can be identified and
hence, the proposed solution can be applied

• Other related patterns: other patterns that should also be considered as an
alternative or complement to solve the given problem

The terms “expensive” and “cheap”, refer to computation, are related, in most
cases, to execution time measured in relation to the accompanying processes within
the same workflow or to the complete workflow execution.

The design patterns related to performance and scalability of LarKC workflows
are described in the following subsections.

6.2 Expensive Pre-computation Followed by Cheap Compu-

tation

• Pattern name: 1 ∗ Expensive+N ∗ Cheap

• Context: Figure 6.2 depicts the structure of this design pattern. The pattern
applies when the execution workflow includes

– One expensive computation process at the beginning of the workflow
execution, known as pre-computation (pre-processing).

– Cheaper computation many times, after the pre-computation.

. . .

N cheap computations

Figure 6.1: Design Pattern 1*Expensive + N*Cheap

• Problem: The pre-computation stage, being very expensive in relation to
the following stages within the workflow, is penalizing the performance of
the overall workflow execution.

• Solution:

– Execution of the pre-computation stage using more powerful hardware
resources, remotely located (such as a HPC cluster) and execution of
the cheaper steps in the local resources (where the platform is running)

– Steps:

34

FP7 – 215535

Deliverable 1.2.2

∗ pre-staging (deployment of the pre-computation process in the re-
mote resources)

∗ processing (data driven - processing within the remote resources).
This may be split in different steps (processing 1, processing 2, etc.),
being then either different instances of the same process, running
over different data chunks (“trivial” parallelization), or different
parts of one single process (parallelization within plug-in)

· processing 1

· processing 2

· processing 3

· ...

∗ post-staging (moving the data back to the local resources)

∗ post-processing (query driven real time interaction workflows, com-
posed by cheaper processes)

– Suggested technology: JavaGAT 2 with predeployment

– Conditions when this solution is applicable: the overhead (in terms of
time) added by the remote execution must be low in comparison to the
execution time of the pre-computation

• Examples: “real-world” examples (LarKC use cases) in which this pattern
can be identified and therefore, the proposed solution can be applied

– Semantic annotation generation (WP7a)

– Map-Reduce application to (part of) the WP7a workflow (computing
the closure once) and then do querying (several times)

– WP2 selector (very expensive selection), followed by other (cheap) plug-
ins execution within the workflow

• Other related patterns: other patterns that should also be considered as an
alternative or complement to solve the given problem

– The pre-computation step may follow one of the following patterns:

∗ Design Pattern 4 - Replication + Partitioning: parallelization “across
instances of the same plug-in” 3, running different instances of the
same process over different data chunks (for this we need a parti-
tioning function, data-dependent).

∗ Other: parallelization “within a plug-in” 4

2JavaGAT middleware supports the remote deployment and execution of plug-ins within
LarKC, http://www.cs.vu.nl/ibis/javagat.html

3parallelization “across plug-ins” or “across instances of the same plug-in”: loosely coupled
components (either different plug-ins or different instances of the same plug-in) that are exe-
cuted at the same time (in parallel), in order to achieve an improvement in the performance.
Communication between the parallel components takes place only at the beginning and at the
end of the execution (and possibly during the execution, but not frequently)

4Parallelization “within a plug-in”: applied to the algorithms that constitute the plug-ins
(inside the plug-in)

35

FP7 – 215535

Deliverable 1.2.2

6.3 Expensive Computation + Cheap Computation + Ac-

cess to External Resources

• Name of the Pattern: N ∗ Expensive+N ∗ Cheap+ Externalresources

• Context: Figure 6.3 depicts the structure of this design pattern. The pattern
applies when the execution workflow includes:

– Some plug-ins which are more expensive than others

– They run over different data sets

– They run in different resources

. . .

N Cheap computationsN Expensive computations

. . .

source
1Dset

1
Dset

2

Figure 6.2: Design Pattern 2: N*Expensive + N*Cheap + External resources

• Problem: The expensive stages are penalizing the performance of the overall
workflow execution. Due to the fact that they may access external data
sources, predeployment of the datasets is not feasible.

• Solution:

– Execution of the expensive stages in more powerful hardware resources,
remotely located (such as a HPC cluster) and execution of the cheaper
steps in the local resources (where the platform is running). An alter-
native is the execution of the complete workflow in powerful hardware
resources which allow access to external data sources.

– Suggested technology:

∗ Alternative 1: JavaGAT with no pre-deployment. For an introduc-
tion to JavaGAT the reader is referred to [11]

∗ Alternative 2: Tomcat.

– Conditions when this solution is applicable: the overhead (in terms of
time) added by the remote execution must be low in comparison to
the execution time of the complete workflow. This applies mainly for
JavaGAT technology, which introduces more overhead than Tomcat.

• Examples: “real-world” examples (LarKC use cases) in which this pattern
can be identified and therefore, the proposed solution can be applied

– WP6 Alpha Urban LarKC workflow including:

36

FP7 – 215535

Deliverable 1.2.2

∗ identification of external data sources (query driven): cheap;

∗ transform data to RDF: expensive. This is a good example to use
a powerful machine equipped with multiple CPUs in order to run
the transform task in parallel on different input chunks. Id propose
here to use the Tomcat approach since its overhead is lower than
for JavaGAT.

• Other Related Patterns: other patterns that should be also considered as an
alternative or complement to solve the given problem

– The expensive steps may be optimized applying one of the following
patterns:

∗ Design Pattern 4 - Replication + Partitioning: parallelization “across
instances of the same plug-in”, running different instances of the
same process over different data chunks (for this we need a parti-
tioning function, data-dependent).

∗ Other: parallelization “within a plug-in”

6.4 Continuous Expensive Computation

• Name of the Pattern: ∞∗ Expensive

• Context: Figure 6.4 depicts the structure of this design pattern. The pattern
applies when the execution workflow includes:

– Indefinite iterations of one expensive computation plug-in

Expensive computation continuous

. . .

Figure 6.3: Design Pattern 3: ∞∗ Expensive

• Problem: The execution of the expensive (unique) plug-in is penalizing the
performance of the overall workflow execution.

• Solution:

– Execution of the complete workflow in more powerful hardware re-
sources (such as a HPC cluster), either remotely located or together
with the platform itself.

37

FP7 – 215535

Deliverable 1.2.2

– Suggested technology:

∗ JavaGAT with no pre-deployment, in case the workflow is access-
ing external data sets which may change over the time. For an
introduction to JavaGAT the reader is referred to [11]

∗ JavaGAT with predeployment, in case it is possible to deploy the
data set prior to the workflow execution (that is, in case it is coming
from external sources, it is not changing over time).

– Conditions when this solution is applicable: the overhead (in terms of
time) added by the remote execution must be low in comparison to the
execution time of the complete workflow.

• Examples: “real-world” examples (LarKC use cases) in which this pattern
can be identified and therefore, the proposed solution can be applied

– WP7a: Semantic Integration (continuous improvement of a dataset).

– Computing the closure of a dataset applying MapReduce.

• Other Related Patterns: other patterns that should be also considered as an
alternative or complement to solve the given problem

– Some of them or all expensive steps may be optimized applying one of
the following patterns:

∗ Design Pattern 4 - Replication + Partitioning: parallelization “across
instances of the same plug-in”, running different instances of the
same process over different data chunks (for this we need a parti-
tioning function, data-dependent)

∗ Other: parallelization “within a plug-in”

6.5 Replication + Data partitioning

• Name of the Pattern: Replication+ Partitioning

• Context: Figure 6.5 depicts the structure of this design pattern. The pattern
applies when the execution workflow includes

– One plug-in (P1) which can be instantiated several times in parallel
(1, . . . , n), over different partitions of a data set

• Problem: The execution of the expensive (unique) plug-in is penalizing the
performance of the overall workflow execution.

• Solution:

– Execution of the complete workflow in more powerful hardware re-
sources (such as a HPC cluster), either remotely located or together
with the platform itself. A partitioning function, data-dependent, is
necessary to be executed prior the execution of the plug-in instances.

– Suggested technology:

38

FP7 – 215535

Deliverable 1.2.2

P1
(1)

. .
 .

P1
(2)

P1
(n)

Figure 6.4: Design Pattern 4: Replication + Partitioning

∗ Marvin-style implementation [24]

∗ Java Thread Pooling

– Conditions when this solution is applicable:

∗ the overhead (in terms of time) added by the remote execution
must be low in comparison to the execution time of the complete
workflow;

∗ it is possible to deploy the complete data set prior to the workflow
execution (that is, in case it is coming from external sources, it is
not changing over time);

∗ input data is splittable.

• Examples: “real-world” examples in which this pattern can be identified and
therefore, the proposed solution can be applied

– WP7b: Semantic annotation, information extraction application (GATE).

– LarKC plug-ins which operate on splittable data sets.

• Other Related Patterns: other patterns that should be also considered as an
alternative or complement to solve the given problem

– This design pattern may be applied to optimize expensive steps within
other design patterns.

6.6 Balanced Computation

• Name of the Pattern: N ∗ (X ∗ Expensive+ Y ∗ Cheap)

• Context: Figure 6.6 depicts the structure of this design pattern. The pattern
applies when the execution workflow includes:

39

FP7 – 215535

Deliverable 1.2.2

– Some expensive steps, combined with some cheaper ones, but no one of
them dominating

N computations

Figure 6.5: Design Pattern 5: N ∗ (X ∗ Expensive+ Y ∗ Cheap)

• Problem: The execution of the expensive plug-ins is penalizing the perfor-
mance of the overall workflow execution.

• Solution:

– The big plug-ins are shipped to (remote) more powerful hardware re-
sources (a bigger machine, which imposes low overhead, but not a HPC
cluster).

– Suggested technology:

∗ Tomcat, WS-style architecture

– Conditions when this solution is applicable:

∗ The overhead of shipping code and data to the remote (more pow-
erful) resources is not too big compared with the execution time of
the complete workflow.

• Examples: “real-world” examples (LarKC use cases) in which this pattern
can be identified and therefore, the proposed solution can be applied

– WP6 Alpha Urban LarKC workflow

• Other Related Patterns: other patterns that should be also considered as an
alternative or complement to solve the given problem

– Some of them or all expensive steps may be optimized applying one of
the following patterns:

∗ Design Pattern 4 - Replication + Partitioning: parallelization “across
instances of the same plug-in”, running different instances of the
same process over different data chunks (for this we need a parti-
tioning function, data-dependent).

∗ Other: parallelization “within a plug-in”

40

FP7 – 215535

Deliverable 1.2.2

7 Conclusion

This deliverable reported on the work that is being done in LarKC towards the
definition of an operational framework for scalable reasoning in LarKC. The main
goal of this deliverable (the second in a series of three deliverables concerned with
the definition of the aforementioned framework) was to report on the results of a
series of activities aimed at improving re-use and tighter integration of components
in LarKC. To achieve that goal we have presented the work on several plug-ins
currently being implemented in LarKC and described their overall architecture.
We have made special emphasis in exploring and identifying different possibilities
for re-use. For each plug-in type described in this deliverable we have identified
their main components and discussed how they can be implemented as separate
plug-ins in order to foster re-use and, how they can re-use other components/plug-
ins to implement their functionality.

The second contribution of this deliverable is the result of the close collabora-
tion between technical work packages 1 and 5 and comes in the form of a series
of design patterns. These aim at supporting developers in the implementation of
plug-ins. These design patterns are the result of the analysis of performance and
scalability of the LarKC platform’s architecture and current prototype implemen-
tations.

From the work on user interest-based selection we were able to identify the
need for a platform-wide mechanism for representating the users interest. The
suggestionn is to add a series of classes to the LarKC API to represent user in-
terests. In this way, every plug-in would have access to this information without
the need of implementing a model of user interests in each plgu-in. Such set of
classes should provide the basic functionality for accessing the user’s contextual
information, like for instance the user’s interests.

The work on ML-based data transformation allowed us to identify several pos-
sibilities for reuse of components in the platform. In particular, we have identified
the possibility to extract from the data transformation plug-in the mechanism for
creating populations and implement this functionality as an Identify plug-in. In
this way population-based plug-ins (those that work based on populations) can
reuse the same Identify plug-in. We have also identified the possibility to use Se-
lect plug-ins to implement sampling mechanisms. How to do effective and efficient
sampling of data is being investigated in the context of the technical work pack-
age 2. The work on ML-based transformation has also highlighted the need for
inductive reasoners in LarKC.

The work on Reason plug-ins have shown that the relation between selection
and reasoning is an important one that needs to be further investigated and ex-
ploited. For some type of reasoning paradigms (e.g. rule-base reasoning) a more
ne-grained integration of selection and reasoning need to be investigated; which
can not be achieved at the moment using plug-in wrappers around existing third
party components. We have also reported the ongoing work on instance retrieval
where a framework for anytime instance retrieval by ontology approximation has
been presented. We have also presented and discussed three concrete ideas on
how the 3-step workow provided by this framework can be realized in the LarKC
platform. Moreover, we have discussed several possibilities for reusing some of the
components of the approximate reasoning plug-ins introduced in this deliverable,

41

FP7 – 215535

Deliverable 1.2.2

namely the possibility to implement approximate reasoning as a Transform and/or
Select plug-ins. Future work will investigate the possibility to re-use existing Se-
lect components (developed in technical work package 2) within the approximate
reason plug-in. We have also reported on the work on PION, a system for rea-
soning with inconsistent ontologies, and discussed ideas about how the selection
component in PION can be realized by several Select plug-ins.

Future work will be concerned with the specification of the operational frame-
work based on the lessons learned in the first two deliverables and with keep
working on fine-grained reuse of components in LarKC.

42

FP7 – 215535

Deliverable 1.2.2

References

[1] AtanasKiryakov, ZdravkoTashev, Damyan Ognyanoff andRuslanVelkov and-
VassilMomtchev andBoikoBalev, and IvanPeikov. D5.5.2 - Valida-
tiongoalsandmetricsfortheLarKCplatform, August 2009. Available at
http://www.larkc.eu/deliverables/.

[2] F. Baader, S. Brandt, and C. Lutz. Pushing the el envelope further. In
Proceedings of the Washington DC workshop on OWL: Experiences and Di-
rections, 2008.

[3] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allo-
cation. J. Mach. Learn. Res., 3, 2003.

[4] Alexander Budanitsky and Graeme Hirst. Semantic distance in wordnet: An
experimental, application-oriented evaluation of five measures. In Workshop
on WordNet and Other Lexical Resources, 2nd meeting of the North American
Chapter of the Association for Computational Linguistics. Pittsburgh, PA.,
2001.

[5] M. Silverstein C. Alexander, S. Ishikawa. A pattern language: towns, build-
ings, construction, volume 2 of Center for Environmental Structure. Oxford
University Press US, 1977.

[6] Samir Chopra, Rohit Parikh, and Renata Wassermann. Approximate belief
revision prelimininary report. Journal of IGPL, 2000.

[7] J. de Bruijn, H. Lausen, R. Krummenacher, A. Polleres, L. Predoiu, M. Kifer,
and D. Fensel, year=2005. D16. 1v0. 2 The Web Service Modeling Language
WSML.

[8] T. Eiter, G. Gottlob, and H. Mannila. Disjunctive datalog. ACM Transactions
on Database Systems (TODS), 22(3):364–418, 1997.

[9] E.Simperl, U. Keller, F. Fischer, B. Bishop E. Oren, Z. Huang, G. Tagni,
J. Quesada, B. Fortuna, J. Hu, and Y. Qin. An overview of relevant work in
other areas. Technical report, Large Knowledge Collider (LarKC), 2009.

[10] E. Gabrilovich and S. Markovitch. Wikipedia-based semantic interpretation
for natural language processing. Journal of Artificial Intelligence Research,
34(1):443–498, 2009.

[11] Georgina Gallizo, Mick Kerrigan, Barry Bishop, Spyros Kotoulas, Luka
Bradesko, Matthias Assel, Alexey Cheptsov, and Vassil Momtchev. D5.3.2
- Overall LarKC Architecture and Design v1, September 2009. Available at
http://www.larkc.eu/deliverables/.

[12] Perry Groot, Heiner Stuckenschmidt, and Holger Wache. Approximating de-
scription logic classification for semantic web reasoning. In ESWC, pages
318–332, 2005.

43

FP7 – 215535

Deliverable 1.2.2

[13] B.N. Grosof, I. Horrocks, and R. Volz. Description logic programs: combining
logic programs with description logic. Proceedings of the 12th international
conference on World Wide Web, pages 48–57, 2003.

[14] Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent
ontologies. In Proceedings of the International Joint Conference on Artificial
Intelligence - IJCAI’05, 2005.

[15] Zhisheng Huang and Frank van Harmelen. Using semantic distances for rea-
soning with inconsistent ontolgies. In Proceedings of the 7th International
Semantic Web Conference (ISWC2008), 2008.

[16] Zhisheng Huang, Frank van Harmelen, Stefan Schlobach, Gaston Tagni, An-
nette ten Teije, Yi Zeng, Yan Wang, and Ning Zhong. D4.3.2 - Implemented
Plug-ins for Interleaving Reasoning and Selection of Axioms, March 2010.
Available at http://www.larkc.eu/deliverables/.

[17] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ- Description Logic to
Disjunctive Datalog Programs. Proc. of the 9th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2004), pages 152–162, 2004.

[18] Integrated rule inference system. http://www.iris-reasoner.org/, 2010.
STI Innsbruck.

[19] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM a pragmatic seman-
tic repository for OWL. In Web Information Systems Engineering (WISE)
Workshops, page 182192, 2005.

[20] M. Krtzsch, S. Rudolph, and P. Hitzler. Elp: Tractable rules for owl 2.
In Proceedings of the 7th International Semantic Web Conference. Springer,
2008.

[21] O. Lassila, R.R. Swick, et al. Resource Description Framework (RDF) Model
and Syntax Specification. 1999.

[22] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by
non-negative matrix factorization. Nature, 1999.

[23] Hansjorg Neth, Lael J. Schooler, Jorg Rieskamp, Jose Quesada, Jie Xiang,
Rifeng Wang, Lijuan Wang, Haiyan Zhou, Yulin Qin, Ning Zhong, and
Yi Zeng. D4.2.2 - analysis of human search strategies, September 2009. Avail-
able from: http://www.larkc.eu/deliverables/.

[24] Eyal Oren, Spyros Kotoulas, George Anadiotis, Ronny Siebes, Annette ten
Teije, and Frank van Harmelen. Marvin: Distributed reasoning over large-
scale semantic web data. Web Semantics, 7(4):305–316, 2009.

[25] Owl 2 web ontology language profiles. http://www.w3.org/TR/2009/

CR-owl2-profiles-20090611/, June 2009. W3C Candidate Recommenda-
tion.

44

FP7 – 215535

Deliverable 1.2.2

[26] Jose Quesada, Yi Zeng, Ralph Brandao, Lael Schooler, Stefan Otte, Yan
Wang, Zhisheng Huang, Ning Zhong, and Danica Damljanovic. D2.3.2 - Cog-
nitive Memories component v. 2. Subsetting by statistical semantics and user
interests, March 2010. Available at http://www.larkc.eu/deliverables/.

[27] Jose Quesada, Yi Zeng, Lael J. Schooler, Haiyan Zhou, Ning Zhong, Yulin
Qin, Shengfu Lu, Yiyu Yao, and Yang Gao. D2.3.1 - Cognitive Memories
Components v1, March 2009. Available at http://www.larkc.eu/deliverables/.

[28] Rdf semantics. http://www.w3.org/TR/rdf-mt/, February 2004. W3C Rec-
ommendation.

[29] M. Sahlgren. An introduction to random indexing. In Methods and Applica-
tions of Semantic Indexing Workshop at the 7th International Conference on
Terminology and Knowledge Engineering, TKE 2005. Citeseer, 2005.

[30] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation.
Artificial Intelligence, 74(2):249–310, 1995.

[31] S. Schlobach, E. Blaauw, M. El Kebir, A. ten Teije, F. van Harmelen, S. Bor-
toli, M. Hobbelman, K. Millian, Y. Ren, S. Stam, P. Thomassen, R. van het
Schip, and W. van Willigem. Anytime classification by ontology approxima-
tion. In Ruzica Piskac et al., editor, Proceedings of the workshop on new
forms of reasoning for the Semantic Web: scalable, tolerant and dynamic,
pages 60–74, 2007.

[32] Heiner Stuckenschmidt. Partial matchmaking using approximate subsump-
tion. In Proceedings of the Twenty-Second Conference on Artificial Intelli-
gence (AAAI-07), 2007.

[33] H. J. ter Horst. Combining rdf and part of owl with rules: Semantics, de-
cidability, complexity. In Proceedings of the 4th International Semantic Web
Conference. Springer, 2005.

[34] Volker Tresp, Yi Huang, Markus Bundschus, and Achim Rettinger. Materi-
alizing and querying learned knowledge. In Proceedings of the First ESWC
Workshop on Inductive Reasoning and Machine Learning on the Semantic
Web, 2009.

[35] Volker Tresp and Kai Yu. Learning with dependencies between several re-
sponse variables. In Tutorial at ICML 2009, 2009.

[36] J.D. Ullman. Principles of Database Systems. WH Freeman & Co. New York,
NY, USA, 1983.

[37] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-
ume I. Computer Science Press, 1988.

[38] H Wache, P Groot, and H Stuckenschmidt. Scalable instance retrieval for the
semantic web by approximation. Lecture notes in computer science, 3807:245,
2005.

45

