
LarKC
The Large Knowledge Collider

a platform for large scale integrated reasoning and Web-search

FP7 – 215535

D4.3.2 Implementation of Plug-ins
for Interleaving Reasoning and

Selection

Coordinator: [Zhisheng Huang (VUA)]
With contributions from: [Zhisheng Huang (VUA), Frank
van Harmelen (VUA), Stefan Schlobach (VUA), Gaston
Tagni(VUA), Annette ten Teije (VUA), Yi Zeng (WICI),

Yan Wang (WICI), Ning Zhong (WICI)]
Quality Assessor: [Danica Damljanovic (Sheffield)]
Quality Controller: [Frank van Harmelen (VUA)]

Document Identifier: LarKC/2010/D4.3.2/V1.0.0
Class Deliverable: LarKC EU-IST-2008-215535
Version: version 1.0.0
Date: March 24, 2010
State: final
Distribution: public

FP7 – 215535

Deliverable 4.3.2

Executive Summary

In this document, we discuss the implementation issues of plug-ins for interleaving
reasoning and selection. The work covers the following topics: i) Implementation of
PION for interleaving reasoning and selection within the LarKC platform, ii) Anytime
instance retrieval by ontology approximation, and iii) Unifying selection and reasoning
with user interests.

For PION, we explore the implementation of variants of PION for interleaving
reasoning and selection within the LarKC platform, which includes i) the DIGPION
which uses the DIG interface reasoner to call an external PION system, ii) the Sim-
plePION which provides basic implementation of the interleaving of reasoning by an
OWLAPI reasoner and selection by syntactic-relevance -based selection functions, iii)
the PIONwtihStopRule which uses a set of stop rules in the procedure of interleav-
ing reasoning and seletion, and iv) the PIONWorkflow which is designed to be an
interleaving workflow of reasoning and selection within the LarKC Platform.

In this document, we present an approach of anytime instance retrieval by ontology
approximation for interleaving reasoning and language-based selection, and investigate
the design and the implementation issue within the LarKC platform. For the interleav-
ing framework with user-interest-based selection, we present several concrete selection
strategies, discuss the implementation issue of unifying selection and reasoning with
user interests (I-ReaSearch), and report an initial evaluation on scalability for the
proposed methods.

2 of 45

FP7 – 215535

Deliverable 4.3.2

Document Information

IST Project
Number

FP7 – 215535 Acronym LarKC

Full Title The Large Knowledge Collider: a platform for large scale integrated
reasoning and Web-search

Project URL http://www.larkc.eu/
Document URL
EU Project Officer Stefano Bertolo

Deliverable Number 4.3.2 Title Implementation of Plug-ins for Interleaving
Reasoning and Selection

Work Package Number 4 Title Reasoning and Deciding

Date of Delivery Contractual M24 Actual 31-March-10
Status version 1.0.0 final 2

Nature prototype � report 2 dissemination 2

Dissemination
Level

public � consortium 2

Authors (Part-
ner)

Zhisheng Huang (VUA), Frank van Harmelen (VUA), Stefan Schlobach
(VUA), Gaston Tagni(VUA), Annette ten Teije (VUA), Yi Zeng (WICI),
Yan Wang (WICI), Ning Zhong (WICI)

Resp. Author
Zhisheng Huang (VUA) E-mail huang@cs.vu.nl
Partner VUA Phone +31 (20) 5987823

Abstract
(for dissemination)

In this document, we discuss the implementation issues of plug-ins for in-
terleaving reasoning and selection. The work covers the following topics:
i) Implementation of PION for interleaving reasoning and selection within
the LarKC platform, ii) Anytime instance retrieval by ontology approxi-
mation, and iii) Unifying selection and reasoning with user interests.

Keywords Reasoning, Selection, Approximate Reasoning, Stop Rules, User Interests

3 of 45

FP7 – 215535

Deliverable 4.3.2

Project Consortium Information

Participant’s name Partner Contact
Semantic Technology Institute Innsbruck,
Universitaet Innsbruck

Prof. Dr. Dieter Fensel
Semantic Technology Institute (STI),
Universitaet Innsbruck,
Innsbruck, Austria
Email: dieter.fensel@sti-innsbruck.at

AstraZeneca AB Bosse Andersson
AstraZeneca
Lund, Sweden
Email: bo.h.andersson@astrazeneca.com

CEFRIEL - SOCIETA CONSORTILE A
RESPONSABILITA LIMITATA

Emanuele Della Valle
CEFRIEL - SOCIETA CONSORTILE A RE-
SPONSABILITA LIMITATA
Milano, Italy
Email: emanuele.dellavalle@cefriel.it

CYCORP, RAZISKOVANJE IN EKSPERI-
MENTALNI RAZVOJ D.O.O.

Michael Witbrock
CYCORP, RAZISKOVANJE IN EKSPERIMEN-
TALNI RAZVOJ D.O.O.,
Ljubljana, Slovenia
Email: witbrock@cyc.com

Höchstleistungsrechenzentrum,
Universitaet Stuttgart

Georgina Gallizo
Höchstleistungsrechenzentrum,
Universitaet Stuttgart
Stuttgart, Germany
Email : gallizo@hlrs.de

MAX-PLANCK GESELLSCHAFT ZUR
FOERDERUNG DER WISSENSCHAFTEN
E.V.

Dr. Lael Schooler,
Max-Planck-Institut für Bildungsforschung
Berlin, Germany
Email: schooler@mpib-berlin.mpg.de

Ontotext AD Atanas Kiryakov,
Ontotext Lab,
Sofia, Bulgaria
Email: naso@ontotext.com

SALTLUX INC. Kono Kim
SALTLUX INC
Seoul, Korea
Email: kono@saltlux.com

SIEMENS AKTIENGESELLSCHAFT Dr. Volker Tresp
SIEMENS AKTIENGESELLSCHAFT
Muenchen, Germany
Email: volker.tresp@siemens.com

THE UNIVERSITY OF SHEFFIELD Prof. Dr. Hamish Cunningham,
THE UNIVERSITY OF SHEFFIELD
Sheffield, UK
Email: h.cunningham@dcs.shef.ac.uk

VRIJE UNIVERSITEIT AMSTERDAM Prof. Dr. Frank van Harmelen,
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, Netherlands
Email: Frank.van.Harmelen@cs.vu.nl

THE INTERNATIONAL WIC INSTI-
TUTE, BEIJING UNIVERSITY OF
TECHNOLOGY

Prof. Dr. Ning Zhong,
THE INTERNATIONAL WIC INSTITUTE
Mabeshi, Japan
Email: zhong@maebashi-it.ac.jp

INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER

Dr. Paul Brennan,
INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER
Lyon, France
Email: brennan@iarc.fr

INFORMATION RETRIEVAL FACILITY Dr. John Tait, Dr. Paul Brennan,
INFORMATION RETRIEVAL FACILITY
Vienna, Austria
Email: john.tait@ir-facility.org

4 of 45

FP7 – 215535

Deliverable 4.3.2

Table of Contents

List of figures 6

List of Acronyms 7

1 Introduction 8

2 PION for Interleaving Reasoning and Selection 10
2.1 General Framework of PION . 10
2.2 PION within the LarKC Platform . 12
2.3 Implementation of DIGPION . 12
2.4 Implementation of SimplePION . 15
2.5 Implementation of PIONwithStopRules 18
2.6 Implementation of PIONWorkflow . 20
2.7 Conclusion . 21

3 Anytime Reasoning by Ontology Approximation 22
3.1 A Framework for Anytime Reasoning by Ontology Approximation . . . 22
3.2 Approximate Reasoning Plug-in . 24
3.3 Two LarKC Workflows for Anytime Approximate Reasoning 28

4 I-ReaSearch: Unifying Selection and Reasoning with User Inter-
ests 31
4.1 A General Framework of I-ReaSearch 31
4.2 Interests-Based Query Refinement . 32
4.3 Interleaving Selection and Reasoning Based on User Interests 33
4.4 Implementation of Interests-Based Reasoner Plug-in 33
4.5 An Initial Evaluation on the Scalability of Proposed Strategies 36

5 Conclusion 38

References 38

A PION within the LarKC Platform: User Manual 41
A.1 Using SPARQL-DL to Express OWL-DL Formulas 41
A.2 DIGPION . 42
A.3 SimplePION . 44
A.4 PIONwithStopRules . 44
A.5 PIONWorkflow . 45

5 of 45

FP7 – 215535

Deliverable 4.3.2

List of Figures

2.1 DIGPION . 13
2.2 SimplePION . 15
2.3 SimplePION Class Diagram . 16
2.4 SPARQL Ask Processing in SimplePION 17
2.5 PION with Stop Rules . 18
2.6 The Class Diagram of PIONwithStopRules 19
2.7 PIONWorkflow . 21

3.1 3-step workflow for approximate reasoning experiments; every square
box can be changed per experiment . 23

3.2 gain, pain and gain-pain curves . 25
3.3 Architecture of a reason plug-in in LarKC implementing the 3-step

workflow introduced above . 25
3.4 Class diagram depicting the main classes that make up the approximate

reasoner plug-in . 28
3.5 LarKC workflow for anytime reasoning by ontology approximation using

a Selecter to approximate ontologies . 29
3.6 LarKC workflow for anytime reasoning by ontology approximation using

a Transformer to approximate ontologies 30

4.1 the Interest-Based Reasoner . 34
4.2 the Interest-Based Reasoner Class Diagram 35
4.3 SPARQL SELECT Processing in the Interest-Based Reasoner 35
4.4 Query Refinement Processing . 36
4.5 A comparative study on the Scalability of Proposed Strategies 37

A.1 PION TestBed . 44

6 of 45

FP7 – 215535

Deliverable 4.3.2

List of Acronyms

Acronym Description

DL Description Logics
OWL Web Ontology Language
PION The System of Processing Inconsistent Ontologies
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SPARQL SPARQL Protocol And RDF Query Language

7 of 45

FP7 – 215535

Deliverable 4.3.2

1. Introduction

Interleaving reasoning and selection is considered to be an approach to improving the
performance of the LarKC platform. The main idea of the interleaving framework is to
use selectors to select only limited and relevant part of data for reasoning, so that the
efficiency and the scalability of reasoning can be improved. Thus, the general scenario
of interleaving reasoning and selection consists of the following three steps:

• Selection: Use a selector to select part of data.

• Reasoning: Use a reasoner to reason over the selected data;

• Deciding: Use a decider to decide whether or not the procedure should be
stopped and return an answer or go back to the selection step to continue the
interleaving processing.

There are various selection strategies in the interleaving framework. The selection
can be made based on some measures of relevance among the data. For example, a
syntactic relevance measure is one which is based on a symbolic co-occurrence checking
[11]. A semantic relevance measure is one which uses some kind of background knowl-
edge which provides some informtion about the meaning of the data [12]. The selection
can be also made based on user preference or interests. In Deliverable D4.3.1 [14], we
presented a framework of interleaving reasoning and selection, proposed several ap-
proaches for the interleaving framework, and examined the framework of interleaving
reasoning and selection within the LarKC platform. In Deliverable D4.3.1, we reported
the following work of interleaving reasoning and selection:

• Query-based selection. Query-based selection is one in which data/axioms
selection is made by examining its relevant with its reasoning queries. PION
is a system of interleaving reasoning and selection which uses some selection
functions based on either a syntactic relevance measure or a semantic relevance
measure with respect to its reasoning queries. In D4.3.1, we proposed various
strategies of interleaving query-based selection and reasoning within the LarKC
platform;

• User-interest-based selection. User-interest-based selection is one in which
selection is made based on the interests of perspective users. This kind of selec-
tion is examined with respect to variant granularities of user interests. In Deliv-
erable D4.3.1, we investigated the Web scale reasoning from the perspective of
granular reasoning, and developed several strategies of Web scale reasoning with
user interests and granularities.

• Language-based selection. Language-based selection is one in which selection
is made by selecting part of sub-language or vocabularies. In Deliverable 4.3.1, we
developed several approaches of classification with anytime behaviors based on
approximate reasoning and reported the results of the experiments with several
realistic ontologies.

This document is a sequel of Deliverable D4.3.1. In this document we focus on the
implementation issues of the work proposed in Deliverable D4.3.1. The work reported
in this document includes:

8 of 45

FP7 – 215535

Deliverable 4.3.2

• We present several variants of PION for the framework of interleaving reasoning
and selection within the LarKC platform. Those variants of PION include: i)
the DIGPION, a PION which uses an external PION sever via the DIG interface
reasoner plugin, ii) the SimplePION, a PION which uses an internal OWLAPI
reasoner plug-in for interleaving reasoning and selection, iii) the PIONwithSto-
pRules, a PION which uses stop rules to decide the interleaving processing, and
iv) the PIONWorkflow, a PION which is designed to be a workflow which uses
a reasoner plug-in for reasoning, uses several selection plug-ins for selection, and
a decider plug-in for the interleaving processing.

• Anytime Reasoning by Ontology Approximation. We introduce a framework for
studying anytime reasoning by ontology approximation systematically through
the specification of three independent components. Such framework is speci-
fied by a 3-step workflow consisting of a number of independent modules, which
can be instantiated for different reasoning tasks and approximation strategies.
The crucial elements of this workflow are separate modules for approximation,
reasoning and evaluation. After the introduction of this framework we present
three concrete ideas on how this 3-step workflow can be realized in the LarKC
platform and how selection and reasoning can be interleaved to achieve anytime
behaviour. This includes the description of a single Reason plug-in that imple-
ments parts of the aforementioned framework and the description of two LarKC
workflows for anytime reasoning by ontology approximation.

• For the interleaving framework with user-interest-based selection, we present
several concrete selection strategies, discuss the implementation issue of unifying
selection and reasoning with user interests (I-ReaSearch), and report an initial
evaluation on scalability for the proposed methods.

This document also provides a user guide in the appendix, which can be considered
as a reference manual for the plug-ins which are reported in this deliverable and have
been released in the LarKC platform.

The rest of this document is organized as follows: Chapter 2 reports the work on
variants of PION. Chapter 3 investigates the work of anytime reasoning by ontology
approximation, Chapter 4 presents the work of the interleaving framework with user-
interest-based selection. Chapter 5 concludes this document. Appendix A provides
the user guide for the existing released plug-ins of the interleaving framework within
the LarKC platform.

9 of 45

FP7 – 215535

Deliverable 4.3.2

2. PION for Interleaving Reasoning and Selection

2.1 General Framework of PION

PION is a system of interleaving reasoning and query-based selection for reasoning
with inconsistent ontologies. In PION, selection functions play the main role for query-
based selection. The selection function can either be based on a syntactic approach,
like Chopra, Parikh, and Wassermann’s syntactic relevance [8] and those in PION[11],
or based on semantic relevance like for example in computational linguistics as in
Wordnet [7] or based on semantic relevance which is measure by the co-occurrence of
concepts in search engines like Google[12].

In our framework, selection functions are designed to be query-specific, which is
different from the traditional approach in belief revision and non-monotoic reasoning,
which assumes that there exists a general preference ordering on formulas for selection.
Given a knowledge base Σ and a query φ, a selection function s is one which returns a
subset of Σ at the step k > 0. Let L be the ontology language, which is denoted as a
formula set. A selection function s is a mapping s : P(L)× L×N → P(L) such that
s(Σ, φ, k) ⊆ Σ. The query-specific approach can be understood to be the one with
various rankings per query.

A selection function s is called monotonic if the subsets it selects monotonically
increase or decrease, i.e., s(Σ, φ, k) ⊆ s(Σ, φ, k + 1), or vice versa. For monotonically
increasing selection functions, the initial set is either an emptyset, i.e., s(Σ, φ, 0) = ∅,
or a fixed set Σ0. For monotonically decreasing selection functions, usually the initial
set s(Σ, φ, 0) = Σ. The decreasing selection functions will reduce some formulas from
the inconsistent set step by step until they find a maximally consistent set.

Traditional reasoning methods cannot be used to handle knowledge bases with
large scale1. Hence, selecting and reasoning on subsets of Σ may be appropriate as an
approximation approach with monotonically increasing selection functions. Reasoning
on a large scale knowledge base Σ can use different selection strategies to achieve this
goal. Generally, they all follow an iterative procedure which consists of the following
processing loop, based on the selection-reasoning-decision loop discussed above:
i) select part of the knowledge base, i.e., find a subset Σ′

i of Σ where i is a positve
integer, i.e., i ∈ I+;
ii) apply the standard reasoning to check if Σ′

i |= φ;
iii) decide whether or not to stop the reasoning procedure or continue the reasoning
with gradually increased selected subgraph of the knowledge graph (Hence, Σ′

1 ⊆ Σ′
2 ⊆

... ⊆ Σ).
Monotonically increasing selection functions have the advantage that they do not

have to return all subsets for consideration at the same time. If a query can be
answered after considering some consistent subset of the knowledge graph KG for
some value of k, then other subsets (for higher values of k) don’t have to be considered
any more, because they will not change the answer of the reasoner. In the following,
we use Σ |= φ to denote that φ is a consequence of Σ in the standard reasoning2, and
use Σ |≈ φ to denote that φ is a consequence of Σ in the nonstandard reasoning.

1The meaning of large scale is relative and might mean different things. In this document, we
use the term ”large scale” to mean that the size of data is too large to be processed by a nowadays
ordinary PC.

2Namely, for any model M of Σ, M |= φ.

10 of 45

FP7 – 215535

Deliverable 4.3.2

[8] proposes a syntactic relevance to measure the relationship between two formulas
in belief sets, so that the relevance can be used to guide the belief revision based on
Schaerf and Cadoli’s method of approximate reasoning[17]. Given a formula set Σ,
two atoms p, q are directly relevant, denoted by R(p, q,Σ) iff there is a formula α ∈ Σ
such that p, q appear in α. A pair of atoms p and q are k-relevant with respect to Σ
iff there exist p1, p2, . . . , pk ∈ L such that: (a) p, p1 are directly relevant; (b) pi, pi+1

are directly relevant, i = 1, . . . , k − 1; and (c) pk, q are directly relevant (i.e., directly
relevant is k-relevant for k = 0).

The notions of relevance above are based on propositional logics. However, ontology
languages are usually written in some fragment of the first order logic. We extend the
ideas of relevance to ontology language. The direct relevance between two formulas are
defined as a binary relation on formulas, namely R ⊆ L×L. Given a direct relevance
relation R, we can extend it to a relation R+ on a formula and a formula set, i.e.,
R+ ⊆ L× P(L) as follows:

〈φ,Σ〉 ∈ R+ iff ∃ψ ∈ Σ such that 〈φ, ψ〉 ∈ R.

Namely, a formula φ is relevant to a knowledge base Σ iff there exists a formula
φ′ ∈ Σ such that φ and φ′ are directly relevant. We can similarly specialize the notion
of k-relevance. Two formulas φ, φ′ are k-relevant with respect to a formula Σ iff there
exist formulas φ0, . . . φk ∈ Σ such that φ and φ0, φ0 and φ1, . . ., and φk and φ′ are
directly relevant. A formula φ is k-relevant to a set Σ iff there exists a formula φ′ ∈ Σ
such that φ and φ′ are k-relevant with respect to Σ.

We can use a relevance relation to define a selection function s to extend the query
‘Σ |≈ φ?’ as follows: We start with the query formula φ as a starting point for the
selection based on syntactic relevance. Namely, we define:

s(Σ, φ, 0) = ∅.

Then the selection function selects the formulas ψ ∈ Σ which are directly relevant to
φ as a working set (i.e. k = 1) to see whether or not they are sufficient to give an
answer to the query. Namely, we define:

s(Σ, φ, 1) = {ψ ∈ Σ | φ and ψ are directly relevant}.

If the reasoning process can obtain an answer to the query, it stops. Otherwise the
selection function increases the relevance degree by 1, thereby adding more formulas
that are relevant to the current working set. Namely, we have:

s(Σ, φ, k) = {ψ ∈ Σ | ψ is directly relevant to s(Σ, φ, k − 1)},

for k > 1. This leads to a ”fan out” behavior of the selection function: the first selection
is the set of all formulae that are directly relevant to the query; then all formulae are
selected that are directly relevant to that set, etc. This intuition is formalized in this:
The relevance-based selection function s is monotonically increasing. We observe that
If k ≥ 1, then

s(Σ, φ, k) = {φ|φ is (k-1)-relevant to Σ}

11 of 45

FP7 – 215535

Deliverable 4.3.2

2.2 PION within the LarKC Platform

We have developed the following variants of PION within the LarKC platform:

• DIGPION. DIGPION is the one in which an external PION reasoner is called
via the DIG interface plug-in within the LarKC platform. The main advantage
of DIGPION is that we can rely on an externally implemented PION system for
interleaving reasoning and selection within the LarKC Platform.

• SimplePION. SimplePION is the one in which PION is implemented as a
plug-in with some simplified functions, which include the support of standard
boolean answers (i.e., either ”true” or ”false”) without using the three-valued
answers such as ”accepted”, ”rejected”, and ”undertermined”, which have been
proprosed in [11].

• PIONwithStopRules. PIONwithStopRules is the one in which PION uses
some stop rules to decide when it would stop the selection and jump to provide
its reasoning result. The idea of using stop rules is inspired by the investigation
of human and animal search strategies in ecology and cognitive science. Using
stop rules for LarKC has been investigated in LarKC deliverable D4.2.2 [16].

• PIONWorkflow. PIONWorkFlow is the one in which PION is designed to
be a workflow which uses selection plug-ins and reasoner plug-ins. The main
advantage of the scenario of PIONWorkflow is that this approach provides the
possibility to use various selecters and reasoners which have been implemented
independently from the interleaving framework.

2.3 Implementation of DIGPION

DIGPION is the one in which an external PION reasoner is called via the DIG
interface[5]3 plug-in with the LarKC platform, which is shown in Figure 2.1. Namely,
DIGPION uses an external PION reasoner which supports the DIG interface. An
external PION reasoner which provides the DIG interface can be downloaded from
the PION website at Vrije University Amsterdam4. The external PION is a rea-
soner/system which can return meaningful answers to queries on inconsistent ontolo-
gies. PION is powered by XDIG[13]5, an extended DIG Decription Logic Interface for
Prolog, in particular, for SWI-Prolog. The external PION supports TELL requests
both in DIG and in OWL, and ASK requests in DIG. The external PION uses a stan-
dard DL reasoners such as RacerPro6, FaCT++7, KAON28 for its standard reasoning
over DL-based data. In the scenario of DIGPION, calling the PION reasoner is actu-
ally achieved by calling the DIGReasoner plug-in, which provides the support for the
DIG interface within the LarKC platform.

3http://dl.kr.org/dig/
4http://wasp.cs.vu.nl/sekt/pion/
5http://wasp.cs.vu.nl/sekt/dig/
6http://www.racer-systems.com/
7http://owl.cs.manchester.ac.uk/fact++/
8http://kaon2.semanticweb.org/

12 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.1: DIGPION

Thus, for DIGPION, the main issue of its implementation is how to implement the
DIG Reasoner plug-in. In the following, we will briefly report the implementation of
the DIG Reasoner plug-in.

Implementation of the DIG Reasoner Plug-in

The Motivation for the DIG Reasoner plug-in within the LarKC platform is as follows.
All popular DL-reasoners (such as RacerPro, FACT++, Pellet, KAON2) provide the
DIG interface support. The LarKC platform needs the DL/OWL reasoning support.
It is convenient for developers to gain the DL reasoning support via the LarKC DIG
interface. The DIG reasoner plug-in would provide an easy approach to wrapping
non-java-based reasoners (such as PION, MORE, DION, etc.) via the DIG interface.

The DIG interface is a Description Logic Interface developed by DIG (Description
Logic Implementation Group)[5]. The DIG interface uses an HTTP-based protocol,
which is similar with SOAP. The DIG interface 1.0 was developed in 2002[2]. The DIG
interface 1.1, an improved version of the DIG interface, was developed in 2003[3]. the
DIG interface 2.0 was designed for the support of reasoning with OWL data, which
was developed in 2006 [4]. The OWLLink was designed to be the new generation of
DIG for OWL2 in 2008[15].

The current version of the DIG reasoner plug-in supports the following functional-
ities:

• The DIG interface 1.19.

• SPARQL Ask and SPARQL Select queries

• DL Expressions (conjunction, disjunction, disjoint, negation).

• DIG queries (subsumption, instance, instances).

• Reasoning with OWL Data (by using the OWL2DIG library to translate OWL
data into DIG data).

9We are now developing the OWLLink Reasoner plug-in within the LarKC Platform, which will
be released shortly.

13 of 45

FP7 – 215535

Deliverable 4.3.2

The main tasks of the DIG Reasoner plug-in are:

• Data Translation. Because the data set imported to a reasoner plug-in in the
LarKC platform is designed to be a set of statements. The first step of the DIG
reasoner plug-in is to translate a set of statements (ontology data) into a DIG
data, so that it can be posted to the external DIG reasoner. If it is an OWL-DL
data, the system will use the OWL2DIG library to translate it into a DIG data10.

• Query Translation. Since the query to a reasoner plug-in in the LarKC platform
is designed to be a SPARQL query, that query should be translated into DIG
queries, so that they can be posted into the external DIG reasoner.

• Query and answer processing. The DIG reasoner plug-in may have to make
several DIG queries to get the complete answer to a given SPARQL query. For
example, we cannot express a single DIG query which involves two variables
such as SubClassof(x, y). However, SPARQL is expressive to provide a query
which involves multiple variables. The reasoning result of a SPARQL query can
be obtained by multiple DIG query steps, in which one step is used to obtain
variable binding of a single variable, then another step is used to obtain variable
binding of another variable by instantiating a variable of the corresponding the
DIG query.

• Translate DIG answers into SPARQL answers. Since the output of a reasoner
plug-in is designed to be a SPARQL answer (say, a variable binding for a
SPARQL select query), the system have to translate the DIG answers into their
SPARQL answers.

SPARQL is too expressive for a DL reasoner can support. In SPARQL, there is no
semantic interpretation for DL expressions such as owl : sameas, owl : disjointwith,
etc. In [19], Sirin and Parsia propose the SPARQL-DL to solve that problem. SPARQL-
DL is a DL-specific SPARQL with some DL primitives, such as type(a, C), SubClassof(C1, C2),
DisjointWith(C1, C2), ComplementOf(C1, C2), and EquivalentClass(C1, C2). In
order to translate DL expressions into RDF triples, the SPARQL-DL uses the OWL-
DL method which is recommended in [1]11.

The following is an example of SPARQL-DL query, which uses owl : interSectionOf
to express the intersection concept and uses rdf : first and rdf : rest to express a
concept list in SPARQL.

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>
ASK

wine:Bordeaux rdfs:subClassOf _:x.
_:x owl:interSectionOf _:y1.
_:y1 rdf:first wine:SweetWine.
_:y1 rdf:rest wine:TableWine.
wine:Bordeaux rdf:type owl:Class.}

10Of couse, this task can be done by a data transformer in terms of the LarKC platform. We leave
it as one of the future work for PION as a workflow.

11http://www.w3.org/TR/owl-semantics/mapping.html

14 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.2: SimplePION

2.4 Implementation of SimplePION

SimplePION is the one in which PION is implemented as a plug-in with some simplified
functions of PION, which is shown in Figure 2.2. SimplePION uses selection functions
to select a consistent sub-ontology12 of the OWL data (i.e., a set of OWL statements)
and uses a built-in OWLAPI reasoner for the standard reasoning over the selected
sub-ontology.

The current version of the SimplePION has supported the following functionalities:

• The Boolean answers (i.e., either true or false).

• SPARQL Ask and SPARQL Select queries.

• Syntactic-relevance-based selection functions.

• Reasoning with OWL Data.

The class diagram of the SimplePION describes various entities of the system as
classes and the relation between these, which is shown in Figure 2.3. SimplePIONReasoner
calls the methodGetOWLReasonerFactfromStatement to obtain the standard OWLAPI
reasoner which is based on a Pellet Reasoner. The standard OWLAPI reasoner is
specified by the class OWLReasonerFact which contains the reasoner’s relevant infor-
mation such as OWLDataFactory, OWLOntologyManager, and its OWLOntology
which corresponds with the set of Statements, an input of the SimplePION reasoner.
Based on that OWLAPI reasoner (i.e., anOWLReasonerFact), SimplePIONReasoner
uses the method getAnswersfromReaosnerFactonPattern to get a set ofOWLAnwer
from the query which is specified as a BasicPattern of the SPARQLQuery, an input
of the SimplePION reasoner. SimplePIONReasoner uses the method

12Namely, a subset of the OWL statements. In this document, we use the term ”sub-ontology” and
the term ”subset of the OWL data” interchangeablely.

15 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.3: SimplePION Class Diagram

BasicPattern2OWLQuery in the classQuery2OWLQuery to translate the SPARQLQuery
into a string which corresponds with the internal representation of the query which
can be handled further by using the OWLAPI reasoner.

The SPARQL Ask and the SPARQL Select queries are the two main functionalities
which have been supported by the SimplePION. Figure 2.4 shows that how Simple-
PION deals with the SPARQL Ask query. The initial processing of the SPARQL Ask
scenario is to i) get an OWLAPI reasoner, ii) get the OWLOntology from the set of
the input statements, iii) get the basic pattern of the SPARQLQuery, and iv) get the
OWLQuery from the basic pattern. The processing checks further if the OWLOntology
is consistent. If the OWLOntology is already consistent, we use the standard SPARQL
Ask method in the OWLAPI reasoner to obtain the answer from the OWLOntology.
If the OWLOntology is not consistent, we select a sub-ontology of the OWLOntology,
based on the literals in the query, and check if the selected sub-ontology is consistent.
If the selected sub-ontology is inconsistent, that means that we cannot find a consis-
tent sub-ontology. Thus, return the answer ”false”. If the selected sub-ontology is
consistent, we use the OWLAPI reasoner to reason with the selected ontology to get
the answer. If the answer is ”true”, that the processing returns the answer. If the
answer is ”false”, the processing would continue the selection procedure. Namely, a
new sub-ontology which is relevant to the existing selected ontology (thus, the size of
the newly selected sub-ontology may become larger) is selected and its consistentcy is
checked.

16 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.4: SPARQL Ask Processing in SimplePION

17 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.5: PION with Stop Rules

2.5 Implementation of PIONwithStopRules

SimplePION may need a lot of time to complete its processing, because it would
exhaust the relevance checking and selection over the whole data set. A heuristic
method to improve the efficiency of reasoning with some loss of expected answers is
to introduce stop rules to decide when the processing should be stopped. Namely, the
system can decide when the selection should be stopped without further processing.
PIONwithStopRules is the one in which PION use some stop rules to decide when it
would stop the selection and jump to provide its reasoning result. The idea of using
stop rules is inspired by the investigation on human and animal search strategies in
ecology and cognitive science. As discussed in LarKC deliverable D4.2.2, knowing
when to stop is one of the most fundamental problems when engaging in any type
of activity. Most real-world problems do not have a pre-defined completion criterion.
The problem of search termination resurfaces in an aggravated form when a system
faces more than a single problem at once. When time and effort need to be allocated
to multiple tasks finding the right moments to switch between tasks constitutes a
difficult optimization problem[16]. The interleaving framework can be considered as
a processing which switches the tasks of reasoning and selection. Thus, using stop
rules with the interleaving framework would provide a promising approach for the
improvement of reasoning in PION. We will examine and report the evaluation of
PIONwithStopRules in the sequel deliverable D4.7.2 entitled ”Evolved Evaluation and
Revision of plug-ins deployed in use-cases”.

The architecture of PIONwithStopRules is shown in Figure 2.7. The PIONwith-
StopRules plug-in uses the class PIONStopRules to specify a set of the stop rules.

The class diagrams of the PIONwithStopRules is shown in Figure 2.6. In the se-
lection procedure of the PION reasoner with stop rules, the PIONSelectionFunction
calls a method in the class StopRules to decide whether or not the processing should be
stop. The existing implementation of the stop rules consist of CardinalityCheckingRule
and TimeCostCheckingRule. CardinalityCheckingRule checks the cardinality of the

18 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.6: The Class Diagram of PIONwithStopRules

newly selected ontology(i.e., the size of the newly selectedOntology). If the size of the
newly selected ontology is smaller than the size of the previous selected ontology, the
system would stop. TimeCostCheckingRule checks the average time cost per newly
selected axiom. If the average time cost per newly selected axiom is getting bigger,
namely it is harder to find more newly selected axiom, then the system would stop.

The stop rules are specified as java codes. The following java codes show how to
define the cardinality checking rule for the PIONwithStopRules.

public boolean CardinalityCheckingRule(long size) {

boolean answer= false;
// if it is true, that means that it should stop.

last_increment = increment;
increment = size - last_size;

last_size = size;

//if nothing has been found newly or the number of newly found

19 of 45

FP7 – 215535

Deliverable 4.3.2

//axioms is decreasing, then it will stop

if ((increment > last_increment)&&(increment > 0))
{answer= false;}else {answer= true;};

return answer;
}

The following java code defines the time cost checking rule.

public boolean TimeCostCheckingRule(long size)
{
boolean answer= false;
last_increment = increment;
increment = size - last_size;
last_size = size;

Date currentDate = new Date();
currentTime = currentDate.getTime();

long total_time_cost = currentTime - lastTime;

if (increment> 0)
{
current_time_cost = total_time_cost/increment;

if (current_time_cost > last_time_cost)
{answer= true;} else {answer=false;};
}
else {answer= true;};

lastTime = currentTime;
last_time_cost = current_time_cost;

return answer;

}

2.6 Implementation of PIONWorkflow

PIONWorkFlow is the one in which PION is designed as a workflow which uses selec-
tion plug-ins, reasoner plug-ins, and a decider for the interleaving processing, as shown
in Figure 2.7. One of the advantages of the PIONWorkflow is that it allows us to use
various selectors in the processing. The processing of the PION workflow is similar
with the processing of SimplePION. Figure 2.4 shows how to deal with sparqlAsk in
SimplePION. That work chart can also be viewed in the workflow level as that of the
PIONWorkFlow processing.

In the existing implementation of PIONWorkFlow, one can define a workflow which
would launch a PION decider. At the beginning of the PION workflow processing,
the decider first checks if the the ontology is consistent. If the ontology is consistent,
then the decider will start the standard reasoning processing, namely, use the stan-
dard OWLAPI reasoner to obtain the result. If the ontology is inconsistent, then the

20 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 2.7: PIONWorkflow

decider will start a non-standard reasoning processing, namely an interleaving pro-
cessing. In the beginning of the interleaving processing, the decider calls the selector
SelectOntologybasedOnQuery to select a sub-ontology which is relevant to the query
and checks if the selected ontology is consistent. If the selected ontology is consistent,
then the decider will call BasicOWLAPIReasoner to reason with the selected ontol-
ogy and check the result. If the selected ontology is inconsistent, then that means that
we cannot find a proper and consistent sub-ontology, then the decider will stop and
return an answer. For the SPARQL Ask processing, the system would return ”false”.
If the selected ontolgy is consistent, then the decider will continue the interleaving pro-
cessing until the inconsistent sub-ontology is selected or a positive answer is obtained
(say, the answer is ”true” in the SPARQL Ask processing).

2.7 Conclusion

We have investigated the implementation issues of several variants of PION with the
LarKC platform. We have implemented those variants of PION and released them
within the LarKC platform. The user guides of those variants of PION is available at
the appendix of this document. We have not yet made the experiment of those variants
of PION for the evaluation of implemented PION. We will examine and report the
evaluation of those variants of PION in the sequel LarKC deliverable D4.7.2, which is
entitled ”Evolved Evaluation and Revision of plug-ins deployed in use-cases”.

21 of 45

FP7 – 215535

Deliverable 4.3.2

3. Anytime Reasoning by Ontology Approximation

The need for approximation on the Semantic Web raises the challenge to develop algo-
rithms for anytime Semantic Web reasoning, and several attempts have been made to
find suitable approximation strategies and study their effects in practice [20, 10, 18, 21].
Until now, this work has been limited in scope, has had a rather ad-hoc character
(lacking a general framework for theory and application), and most importantly, re-
sults have often been inconclusive and show a need for a more thorough experimental
analysis. A systematic evaluation of strategies and heuristics is challenging, and the
results until now have been difficult to reproduce and compare.

This section, first introduces a framework for testing approximation algorithms sys-
tematically that will make the development of such methods easier, and thus increase
their chances of adoption and deployment (see Section 3.1). To this end, we design a
workflow consisting of a number of independent modules, which can be instantiated
for different reasoning tasks and approximation strategies. The crucial elements of
this workflow are separate modules for approximation, reasoning and evaluation. The
first allows implementing approximation strategies by subset selection (eg. subsets
of axioms, or of vocabulary), the second allows to specify a specific reasoning task
(eg. instance retrieval, ontology classification, or consistency checking), and the final
module allows to implement a suitable evaluation metric. This 3-step workflow has
been realized into a workbench for studying anytime instance retrieval by ontology
approximation. Both, the workbench and the results of our experiments are publicly
available online 1.

After introducing the 3-step workflow for studying approximate reasoning we present
and discuss three concrete ideas on how this 3-step workflow can be realized in the
LarKC platform. First, section 3.2 introduces the overall design of a LarKC Reason
plug-in that implements part of the 3-step workflow. Such plug-in is described in terms
of its constituent components and their functionality. Then, in Section 3.3 we present
and discuss two alternative LarKC workflows that combine several plug-in types in
order to realize our framework for anytime approximate reasoning in LarKC.

3.1 A Framework for Anytime Reasoning by Ontology Approxi-
mation

Our framework consists of a pipeline of three steps (see Figure 3.1), resulting in a new
type of gain diagrams. These three steps allow to define (i) the particular approxima-
tion heuristic to be used, (ii) the reasoning task to which it should be applied, and
(iii) the definition of a performance measure for evaluating the heuristic. This section
describes each of these steps and the resulting gain diagrams.

Approximation step

The foundational results from [17] show that performing an approximate reasoning
tasks on a logical theory can be transformed into executing a classical reasoner on
a suitably approximated theory. Hence, the purpose of the approximation step is to
take an ontology O and to return a sequence of approximations O1, O2, . . . , On. Very

1http://www.few.vu.nl/~gtagni/aboxreasoning/

22 of 45

FP7 – 215535

Deliverable 4.3.2

Ontology

Selection
Strategy

Approximation
Method

Performance
Measures

Reasoner
Reasoning

Task

Approximation Step

Reasoning Step

Evaluation Step

Approximated Ontologies

Approximate Results
+

Measured parameters

Pain/Gain Diagrams

Figure 3.1: 3-step workflow for approximate reasoning experiments; every square box
can be changed per experiment

often, such approximations can be phrased in terms of a selection method, operating
on either the symbols appearing in an ontology (vocabulary selection), or on the set
of axioms in an ontology (axiom selection), operating on either or both of the A-box
and T-box of the ontology. The approximation component does not depend on a
particular strategy: the only requirement is that for a given ontology, this module
returns a sequence of approximations. Although our framework imposes no further
constraints on the approximation step except that it produces ontologies that can be
used in the reasoning step, some formal properties of such selection steps are desirable.
Let O∗ denote the semantic closure of an ontology, ie. all facts that can be derived
according to its semantics. We then have soundness if each O∗

i ⊆ O∗, ensuring that
the approximate results are correct (although possibly incomplete); monotonicity if
O∗

i ⊆ O∗
i+1 for all i = 1, . . . , n − 1, ensuring that the successive approximations get

more correct; and completeness if O∗ = O∗
n, at which point the approximation has

reached perfect quality.

Reasoning step

Approximation can be applied to different reasoning problems such as Instance Re-
trieval or Classification. All that our framework requires is that the reasoning step
takes as input an ontology, and returns answer-sets. These answer sets could be
instance-class memberships (for instance retrieval) or class-class subsumptions (for
classification). It is these answer-sets that determine the quality of the approxima-
tion, and the computational efforts which determine the cost one has to pay.

23 of 45

FP7 – 215535

Deliverable 4.3.2

Analysis step

In the analysis step of our framework we define the concepts of success and costs.
These performance measures can be eg. the standard notions of recall (the number
of retrieved facts in relation to all possible findings), or precision (the correctness of
the given answers), or some non-standard notion of semantic proximity between the
approximate answers and the perfect answers. More generally, we propose the concept
of gain, which abstracts over the detailed measures and describes the results as ratio
between possible and actual findings. Pain is the orthogonal notion describing the
ratio between the costs of reasoning over an approximate ontology versus the non-
approximate one. For specific examples of pain one could think of cost in terms of
runtime or other computational resources, such as memory, user-interaction, database
access, etc.

Gain-Pain diagrams: Obviously, we are interested in whether the gain (success-
ratio of current answers against perfect answers) outweighs the pain (cost-ratio of
current answers against perfect answers), in other words in the gain-pain difference.
This ratio is plotted in our gain-pain diagrams which show at which point of the
anytime computation the gain outweighs the pain (or not, as the case may be, and by
how much). Figure 3.2 illustrates these measures. As the quality of the approximation
increases along the x-axis from 0 − 100%, in this example the gain increases linearly
while the pain increases much more slowly at the beginning, and rises more sharply in
the final 20%. The combined performance measure (pain-gain curve) is calculated as
the difference between these two, with the best performance achieved at about 75% of
the approximation where the proportional gain maximally outweighs the proportional
pain.

The ideal gain-pain curve rises sharply for the initial approximations of the input
representing the desired outcome of a high gain and low pain in the early stages of the
algorithm. Although such a convex gain-curve is the most ideal, even a flat gain curve
at y = 0 is already attractive, because it indicates that the gains grow proportionally
with costs, giving still an attractive anytime behaviour.

Notice that gain-curves always start in (0, 0), since for the empty input both gain
(e.g. recall) and pain (e.g. runtime) are 0, hence their difference is 0. Gain curves
always ends in (100, 0), since for the final perfect approximation both recall and run-
time are 100%, hence their difference is again 0. Also notice that gain-pain curves can
be negative when the proportional pain outweighs the proportional gain for certain
approximations.

3.2 Approximate Reasoning Plug-in

The simplest way to implement the 3-step workflow for approximate reasoning in
LarKC is as a single LarKC reason plug-in. The modular design of this plug-in allows
for changing some of its components and replacing them with other implementations of
the same component. For example, the approximation module is an interface that can
be instantiated by different classes allowing us in this case to experiment with multiple
approximation methods. The same holds for the selection module which allows us to
plug different components implementing different selection strategies.

24 of 45

FP7 – 215535

Deliverable 4.3.2

-100

-50

0

50

100

0 20 40 60 80 100

gain
pain

gain-pain

Figure 3.2: gain, pain and gain-pain curves

In the following we will discuss the overall design of a LarKC plug-in that im-
plements an anytime, approximate reasoner that implements part of the functionality
provided by the workbench described above. Figure 3.3 depicts the overall architecture
of our anytime approximate reasoner plug-in illustrating the its components. Figure
3.4 gives an overview of the main classes involved in the design of the current version.

Approximation
Module

Selection
Module

Results
Manager

Input/Output Manager

DL Reasoner

Reason Plug-in API

DL Reasoner DL Reasoner. . .

Figure 3.3: Architecture of a reason plug-in in LarKC implementing the 3-step work-
flow introduced above

Approximation Component This module implements the approximation step of
the 3-step workflow for anytime approximate reasoning presented above. Given an
ontology this modules returns a set of approximated ontologies. More specifically,
this modules defines an interface for approximating ontologies. The interface can be
instantiated by different approximation classes each of which implements a specific
approximation method. In the current implementation the approximation component
takes as input an OWL ontology and returns a sequence (possibly a singleton) of
approximated ontologies by selecting a subset of the ontology’s vocabulary (atomic

25 of 45

FP7 – 215535

Deliverable 4.3.2

concept names) and rewriting the set of terminological axioms according to the ap-
proximation method described in [17]. The approximation module also provides a way
to produce incremental approximations of an ontology whereby given an initial ontol-
ogy it returns a sequence of approximated ontologies (T-boxes) each of them based on
an incremental subset of the vocabulary of the ontology. For example, given ontology
O = (T,A) the module is able to produce 10 different approximations (Ti, A) where
each Ti is an approximated T-box based on 10% of the vocabulary of the ontology.
The current implementation of this module approximates only the terminological part
of an ontology leaving the assertional part intact. However, it is possible to replace
this component by one that approximates both the terminological and the assertional
parts of an ontology.

Selection Component The selection component of this plug-in refers to the se-
lection step in the 3-step workflow presented above. This component is implemented
as an interface that defines the basic functionality that must be provided by every
selection strategy. For the purposes of approximate reasoning we have defined two ad-
ditional sub interfaces. The first one, a vocabulary selection strategy interface, defines
the common functionality provided by methods that return a subset of the vocabu-
lary of the ontology. The second one, an axiom selection strategy interface, specifies
the minimal functionality that must be provided by methods that return a subset of
the set of terminological axioms defined in the ontology. A selection module takes
an ontology as input and returns either a subset of the vocabulary of the ontology
(vocabulary selection strategies) or a subset of the terminological axioms defined in
the ontology (axiom selection strategies).

In the current implementation of our workbench we have implemented six different
vocabulary selection strategies, which for the purposes of implementing this plug-in
they are implemented as six different selection modules. In the following, we briefly
describe each of the selection strategies.

• Random (R): This function randomly selects a set of atomic concept names from
the ontology’s vocabulary set. The strategy is implemented by the RandomSe-
lection class.

• Most Referenced (MR): This function selects concept names according to the
number of times they appear in terminological axioms. The class MRSelection
implements the behaviour of this strategy.

• Most Members (MM): This function selects atomic concept names based on the
number of instances they have. At each approximation step concepts are sorted
according to the number of instances that were retrieved in the previous step.
In case there is no feedback from the previous reasoning step concepts are sorted
according to the Most Referenced strategy. The rationale behind this strategy
is to select as early as possible those concepts that can produce the largest
number of instances, thus producing the greatest increase in recall. The main
disadvantage of this strategy is that concepts must be sorted at each step of the
approximation process. In addition to this, the strategy must be combined with
another strategy to produce an initial ordering. This strategy is implemented in
the plug-in by the MMSelection class.

26 of 45

FP7 – 215535

Deliverable 4.3.2

• Restriction Class (RC): This function gives higher priority to the fillers of quan-
tified concept expressions and to their respective sub concepts. If the number of
such elements is less than desired number M the additional concepts are chosen
based on the number of instances asserted in the assertional part of the ontology.
The rationale of this strategy is that property restrictions are used for defining
classes implicitly. Consequently, these classes may contribute to retrieving a
large number of instances. The main disadvatange of this strategy is that not
every class in an ontology is defined through property restrictions, a charac-
teristic that makes this strategy incomplete. Therefore, as with the previous
strategy this one needs to be complemented with another strategy for selecting
classes that are not defined through property restrictions. The class RDSelection
implements this selection strategy.

• Most Direct Subclasses (MDS): This function selects atomic concepts based on
the number of direct subclasses they have. The first time this strategy is used,
atomic concepts are sorted in decreasing number of direct subclasses and each
successive call to this function returns the next set of concepts. As with the
Most Referenced strategy concepts can be sorted only once at the beginning
of the anytime reasoning process. The MDS strategy is implemented by the
MDSSelection class.

• Least Direct Subclasses (LDS): This function is the opposite of the MDS function.
The rationale behind using this strategy is that concepts with the least number
of subclasses are more specific and tend to be used to annotate large number of
individuals. The class LDSSelection implements the bahaviour of this strategy.

Input Manager This component is responsible for splitting the ontology into its
terminological and assertional parts. This is required since the current implementation
approximates only the terminological part of an ontology. An advantage of separat-
ing the terminological from the assertional part is that this allows the approximate
reasoner to combine a single terminology with multiple pieces of instance data.

Reasoner Although the reasoner component could be built-in into the approximate
reasoner plug-in we have decided to leave it outside the reasoner. The main advantage
of doing so is that it allows us to (re)use multiple standard DL reasoners. In the
current design access to DL reasoners is accomplished through either the OWLAPI or
the OWLLink interfaces.

Using the context parameter of the Reason interface it is possible to invoke the
approximate reasoner and request to answer the same query using different approxi-
mations of the same ontology. A decider, or the end-user application, would invoke
the reasoner providing a SPARQL query and a data set. The reasoner would then
solve the query by using an approximated ontology as computed by the approxima-
tion module and return the results back to a LarKC Decider or user application. In
case further reasoning is required the approximate reasoner could be invoked again
with the same query and the same input ontology. This time, the reasoner would
approximate the ontology using a bigger subset of the vocabulary and then solve the
query using this new approximated version of the ontology. The context parameter
in the Reason interface could be used to keep state-related information between calls

27 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 3.4: Class diagram depicting the main classes that make up the approximate
reasoner plug-in

to the reasoner, for example, to control the size of the subset of the vocabulary upon
which the next approximation should be computed.

3.3 Two LarKC Workflows for Anytime Approximate Reasoning

The previous section described the overall architecture of a LarKC Reason plug-in
that implements part of the functionality provided by the 3-step workflow introduced
above in terms of a series of modular components for selection, approximation and
reasoning. Although the plug-in’s architecture is rather simple, with only three main
(sub)components, it highlights several points of reuse. In the following we will identify
these points and discuss how to implement the functionality provided by the approxi-
mate reasoning plug-in as a LarKC workflow using several plug-in types.

• Approximation as Transformation plug-in: An InformationSetTransformer plug-
in takes as input an InformationSet, eg. the URL of an OWL ontology, and
returns a (transformed) version of the input InformationSet. One possible im-
plementation of such interface could return an approximated version of the input
ontology, i.e. the transformation step consists in approximating the ontology.
Note that this is literally the case of our approximate reasoner as the approxi-
mation of an ontology is defined in terms of rewriting the terminological axioms
of the ontology based on a subset of the vocabulary. Such a transformer plug-in
would only have to invoke the specific selection method and allow for context
information to be passed to it in order to implement incremental subsetting of
the vocabulary.

28 of 45

FP7 – 215535

Deliverable 4.3.2

• Approximation as Selecter plug-in: Another possibility is to implement the ap-
proximation module as an instance of a Selecter plug-in interface. In this case,
the input parameter of type SetOfStatements represents the ontology that needs
to be approximated. The plug-in’s output (of type SetOfStatements) represents
the approximated version of the input ontology. As with the Transformation-
based approximation discussed above, a selection plug-in would have to invoke a
specific selection method to select the subset of the ontology’s vocabulary or, al-
ternatively, each selection strategy could be implemented as a different selection
plug-in that not only implements a specific selection function but also approxi-
mates an ontology based on this selection method. The selection plug-in should
also be able to accept context information that allows the client class to pass
state-related information, eg. the percentage of vocabulary that must be selected
in the current call.

• Selection as Selecter plug-in: In case the approximation of an ontology is based
on selecting a subset of the terminological axioms of the ontology the selection
module’s functionality could be implemented by a Selecter plug-in. Such plug-
in would return a SetOfStatements representing a subset of the terminological
axioms. Different axiom selection strategies could be implemented by different
instances of this Selecter interface.

• Reasoning Component as Reason plug-in: An obvious point of reuse in our ap-
proximate reasoning plug-in is the use of a reasoner component. The functional-
ity of such module could easily be implemented by a separate LarKC plug-in that
provides alternative reasoning capabilities in terms of expressivity, computational
resources, reasoning paradigm, etc. In particular, for the implementation of our
reasoner we are planning to use standard DL reasoners and access them through
the OWL API and OWLLink plug-ins that provide a wrapper component over
existing OWL reasoners.

LarKC workflows for Anytime Approximate Reasoning

Selecter

Decider

ReasonerIdentify

Figure 3.5: LarKC workflow for anytime reasoning by ontology approximation using
a Selecter to approximate ontologies

Figure 3.5 depicts a LarKC workflow for studying anytime reasoning by ontology
approximation. The workflow consists of four plug-in types. The Identify plug-in
is responsible for identifying the data over which reasoning will be done to answer
a given query. The Selecter plug-in receives the ontology identified by the previous
plug-in and returns an approximation of that ontology. Depending on the desired
selection strategy and approximation method different instances of this plug-in will be
invoked and executed. Once the Selecter plug-in computes the approximated version
of an ontology an appropriate Reason plug-in can be invoked with the approximated

29 of 45

FP7 – 215535

Deliverable 4.3.2

ontology and original query as parameters. Here, the selection of the reasoner may
depend on many factors such as QoS parameters. The Reason plug-in is responsible
for answering the given query using the given approximated ontology. The specific
instance of this plug-in type could be one that invokes an external DL reasoner through
the OWL API paradigm or OWLLink protocol. The last component of the workflow
is a emphDecider plug-in. The Decider is responsible for controlling the execution of
the workflow and deciding whether further approximation must be done in order to
produce more accurate results. For this, the decider must be capable of keeping track of
the state between multiple invocations to the selection plug-in. This information is part
of the context information that is passed to the Selecter plug-in in each invocation and
could include the percentage of vocabulary to be chosen in the current approximation
step.

One way the Decider could determine whether to use another approximated version
of the ontology could be by analyzing the data obtained from the Gain-Pain diagrams
produced by the Evaluation step of the 3-step workflow for approximate reasoning,
assuming the Decider (or any other component in the LarKC workflow) implements
the metrics for evaluating the results returned by the reasoner.

Figure 3.6 illustrates the overall design of a second LarKC workflow where the
Selecter plug-in has been replaced by a InformationSetTransformer plug-in that is
responsible for approximating a given ontology. As in the previous case, different
approximation methods and selection strategies could be implemented by different
InformationSetTransformer plug-ins.

InformationSet
Transformer

Decider

ReasonerIdentify

Figure 3.6: LarKC workflow for anytime reasoning by ontology approximation using
a Transformer to approximate ontologies

30 of 45

FP7 – 215535

Deliverable 4.3.2

4. I-ReaSearch: Unifying Selection and Reasoning with User
Interests

In D4.3.1 and D2.3.1, we introduced how user interests can be involved in the process
of unifying selection and reasoning under several granularity based strategies (More
specifically, the discussion is related to the starting point strategy). Nevertheless,
for the implementation as plug-ins on the LarKC platform, several ideas and initial
design need to be further investigated. In addition, how the proposed strategy scales
still need further discussion. In this chapter, we will focus on concrete implementations
of unifying selection and reasoning (“ReaSearch” for short in the LarKC Project) with
user interests (namely, Interests based ReaSearch, or “I-ReaSearch” for short). Firstly,
we provide an introduction of the general framework for I-ReaSearch. Secondly, 2
concrete strategies and related implementations of unifying selection and reasoning
with user interests (I-ReaSearch) are discussed. At last, some initial evaluation on
scalability for the proposed methods is also provided.

4.1 A General Framework of I-ReaSearch

The “ReaSearch” approach proposed in [9] is aimed at solving the problem of scalability
for Web-scale reasoning. It’s core philosophy is to select an appropriate subset of
semantic data for reasoning and is trying to solve the scalability issue by incomplete
reasoning since the dataset that is acquired from the Web itself are incomplete anyway.
The criterion and concrete methods for selecting a good subset is one of the main tasks
in the LarKC project.

Our main efforts are on the direction of “context-aware” approaches. In D2.3.1 and
D4.3.1 we developed “The starting point strategy” to solve the data selection problem,
which emphasize the power of user interests during the selection process and how it
can be used as a factor to provide good selected subset for the reasoning process.
Recently, we have developed two concrete methods and implementations in the form
of plug-ins that are based on the idea of Interests Based unification of selection and
reasoning (Following the notion in [9], we title the efforts as “I-ReaSearch”, which
means unifying reasoning and search with Interests). The process of I-ReaSearch can
be described as the following rule:

hasInterests(U, I), hasQuery(U,Q), executesOver(Q,D),¬contains(Q, I) →
IReaSearch(I,Q,D),

Where hasInterests(U, I) represents that the user “U” has a list of interests “I”
and can be acquired, hasQuery(U,Q) represents that there is a query input “Q” by
the user “U”, executesOver(Q,D) denotes that the query “Q” is executed over the
dataset “D”, ¬contains(Q, I) represents that the query “Q” does not contain the list
of interests “I”, IReaSearch(I,Q,D) represents that by utilizing the interests list “I”
and the query “Q”, the process of unifying selection and reasoning is taken on the
dataset “D”.

This approach implements the idea of “refining querying by using rules” proposed
in [6]. Currently, there are two main methods under “I-ReaSearch”, namely, the
implementations of IReaSearch(I,Q,D) are with two directions. The first one is user
interests based query refinement, and the second is interleaving selection and reasoning

31 of 45

FP7 – 215535

Deliverable 4.3.2

(now focusing on querying) based on user interests. Both of these strategies utilizes
user interests as the context, but the processing mechanisms are different.

4.2 Interests-Based Query Refinement

For the strategy of user interests based Query Refinement, it adds more constraints to
the user input query according to user interests extracted from some historical sources
(such as previous publication, visiting logs, etc.). The process can be described by the
following rule:

hasInterests(U, I), hasQuery(U,Q), executesOver(Q,D),¬contains(Q, I) →
refinedAs(Q,Q′), contains(Q′, I), executesOver(Q′, D).

In this rule, refinedAs(Q,Q′) represents that the original query “Q” is refined by
using the list of Interests as “Q′”. contains(Q′, I) denotes that “Q′” contains the list
of Interests “I”. executesOver(Q′, D) represents that the refined query “Q′” executes
over the dataset “D”. Namely, “refinedAs(Q,Q′), contains(Q′, I), executesOver(Q′, D)”
implements IReaSearch(I,Q,D) in the I-ReaSearch general framework.

Based on the upper rule, we emphasize that this approach does not select the subset
for querying in advance. Instead, it utilizes the user context to provide a rewritten
query.

From the implementation perspective, the idea of user interests based Query Re-
finement has been implemented as a reasoner plug-in (“Interest-Based Reasoner”)
following LarKC reasoner API. The core implementation is around SPARQL query
rewriting based on user interests acquired from “Context” defined in the parameter
list of the LarKC reasoner API. Since currently, the “Context” parameter is empty in
the defined interface, we implement an interface as a new class.

In this class, we defined some member variables to store basic information of the
user who uses LarKC system. These variables include variables to identify the user
and the data sources which contains the user’s Interests. These variables is prepared
to extract interests of the user. This class also includes variables which store interests
of the user directly, e.g. the literal words or the URIs of interests. The variables to
identify the user include the user’s name and the user’s URI. They both represent the
current user, and at least one of them should have value in actual usage. The variables
to identify the data source containing the user’s interests can be a URL to give the
location of the interests dataset in rdf format, a graph name if the data source is a
named graph of a dataset which is in memory, or a reference to point to a variable
representing a set of statements, and at least one of them should have value in actual
usage.

This class also contains methods to extract interests based on the information
stored in variables mentioned above. Basically, we try the variables at a certain se-
quence with priority, according to the extent of difficulty of getting user interests. In
current design, we adopt a first-easy-last-hard sequence. Speaking in detail, the se-
quence is like this: 1)firstly, we get interests form the variables which directly store
them, and if they have values, return them; 2)if they have no value, we query the
user interests form data source given in context, and if get results, return them; 3)if
the data source doesn’t exist, a real-time extraction of user interests through their
background is needed. In current plug-in, the first two have been contained, the last
one is still in developing and not integrated in current plug-in.

32 of 45

FP7 – 215535

Deliverable 4.3.2

4.3 Interleaving Selection and Reasoning Based on User Inter-
ests

For the Strategy of interleaving selection and reasoning based on user interests, it
emphasize a selection step before querying and reasoning on the data, since user in-
terests might help to find a more relevant sub dataset for each specific user compared
to querying on the whole. The process can be described by the following rule:

hasInterests(U, I), hasQuery(U,Q), executesOver(Q,D),¬contains(Q, I) →
Select(D′, D, I), executesOver(Q,D′).

where “Select(I,D’)” represent the selection of a sub dataset “D′” from the orig-
inal dataset “D” based on the interests list “I”, and executesOver(Q,D′) represents
that the query is executed over the selected sub dataset “D′”. Namely, in the upper
rule, “Select(D′, D, I), executesOver(Q,D′)” implements IReaSearch(I,Q,D) in the
I-ReaSearch general framework.

From the implementation perspective, this method has been implemented as a
interests based selector plug-in (“Interest-Based Selecter”) following LarKC selector
APIs. The implementation of the “Context” parameter in the selector APIs is the
same as in “Interest-Based Reasoner”. The Interest-Based Selecter plug-in takes user
interests from the “Context” parameter and select a subset of the original dataset.
Querying on the selected sub dataset can be performed based on any existing reasoner
plug-ins with query functionality.

4.4 Implementation of Interests-Based Reasoner Plug-in

We developed a plug-in named “Interest-Based Reasoner”. Its function is to refine
the input SPARQL query with user interests, then execute the refined query rather
than the original query. By using this plug-in, the users can get more relative answers
which are relevant to their background (such as interests which can be acquired from
the context).

Figure 4.1 shows the architecture of the Interests-Based Reasoner plug-in and how
it works within the LarKC Platform. There are 3 input parameters which are impor-
tant for the Interests-Based Reasoner, namely, SetofStatement, Context, and SPAR-
QLQuery. In a LarKC workflow, the SetofStatement could come from the previous
plug-in (e.g. a selecter). In order to acquire user interests, we implemented a Con-
textImpl class for the Context interface in the plug-in. ContextImpl includes some
properties and methods which are essential for the function of the Interest-Based Rea-
soner. These properties include the URI/name of the user, the user interests data, etc.
The ContextImpl class also contains some methods which are responsible for getting
user interests. So, the context parameter passed to the Interest-Based Reasoner should
be consistent with the definition of ContextImpl.

At run time, the plug-in accepts the context parameter and invokes methods of the
class ContextImpl to get the user interests information, then pass this information to
the query refinement module to refine the query, then execute the refined query to get
the answer.

The context parameter is responsible for providing enough information to get user
interests. To allow multiple approach to get user interests, we make redundant design

33 of 45

FP7 – 215535

Deliverable 4.3.2

in class ContextImpl. That means, there are multiple properties, but not all of them
need to have values in real use cases. So, if the user interests information is expressed as
the format of word items, it can be directly pass by the context parameter (defined in
the Interests-Based Reasoner plug-in); if the user interests information can be acquired
from an external dataset (provide in the form of an URI, or reference type supported
by the LarKC Platform), and the user name (or URI) is provided, an execution of
SPARQL query is needed to get the user interests. After query refinement, another
execution of the refined SPARQL query will be done to get the final answer. All
the execution of SPARQL query is carried out by SPARQLQueryExecuter(a utility
included in the current LarKC Platform).

Figure 4.1: the Interest-Based Reasoner
Figure 4.2 is the Class Diagram of the Interest-Based Reasoner plug-in. The

class InterestBasedReasoner is the major class of the plug-in, written according to
the LarKC reasoner API. The class QueryR includes the query refinement module.
The class ContextImpl is the implementation of Context interface, including modules
to get user interests. The class UserInterests is defined for a user’s a group of interests
as a whole.

Current Interest-Based Reasoner supports SPARQL select query. Figure 4.3 shows
the how a SPARQL SELECT Query is Processed in the Interest-Based Reasoner plug-
in. The test condition is a Boolean value pass by a property of context parameter.
To keep the property is for the convenience of testing and compare. If the value is

34 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 4.2: the Interest-Based Reasoner Class Diagram

true refine the query, then execute the refined query, then return answers. Otherwise,
execute the query without refinement and return.

Figure 4.3: SPARQL SELECT Processing in the Interest-Based Reasoner
Figure 4.4 shows how to refine a SPARQL query. Firstly, this module analyses

the input SPARQL query, then decides if the query could be refined. Actually, this
step includes a group of test condition, because in some cases, the query couldn’t be
refined, and we need to exclude these cases. If the query could be refined, then the

35 of 45

FP7 – 215535

Deliverable 4.3.2

query will be refined by user interests(a input parameter of query refinement module),
then return the new query.

Figure 4.4: Query Refinement Processing
Currently the plug-in is still in testing phase. The relevant documents (e.g. API,

User Guides, and so on) will be provided together with the release of this plug-in.
For Interleaving selection and reasoning based on user interests, we also developed

an Interest-Based selecter plug-in, which is introduced in D2.3.2.

4.5 An Initial Evaluation on the Scalability of Proposed Strate-
gies

The two strategies of I-ReaSearch are based on different methods to solve the scala-
bility problems. As an illustrative example, we take the SwetoDBLP dataset which
is divided into 22 sub dataset. We evaluate the two implemented strategies by using
these datasets at different scales. A comparative study is provided in Figure 4.5. Two
users are taken as examples, namely Frank van Harmelen and Ricardo Baeza-Yates.
Top 9 retained interests (as defined in D 2.3.1) for each of them are taken from the
retained interests RDF dataset (reported in http://wiki.larkc.eu/csri-rdf) to unify the
selection and reasoning process. Three different kinds of querying strategies are per-
formed on the gradually growing dataset (each time add 2 subset with the same size,
around 55M for each, and 1.08G over all), namely, the original query by user inputs,
user interests based query refinement, and interleaving selection and reasoning based
on user interests.

As shown in the figure. Since “user interests based Query Refinement” takes more
constraints compared to the original input query by the user, it requires more pro-
cessing time, and when the size of the dataset is growing, the processing time is also
growing very rapidly, which means that this method does not scales well if we just
consider the required time. Although this method takes more time, as reported in
D2.3.1, the quality of acquired query results is much better than that without user
interests refinement.

Since “interleaving selection and reasoning based on user interests” select relevant
sub dataset in advance, the required query time reduces a lot, and as the size of

36 of 45

FP7 – 215535

Deliverable 4.3.2

Figure 4.5: A comparative study on the Scalability of Proposed Strategies

the dataset grows, compared to the unrefined query and the one that is using “user
interests based Query Refinement”, the query time is always comparatively shorter
and is not increasing very fast. Meanwhile, its query results quality is the same as
“user interests based Query Refinement”. Hence, this method scales better.

In this section, we just give a very initial evaluation on the scalability of the I-
ReaSearch approaches (We focus on the scalability of querying). More detailed Evalu-
ation on how the “interleaving selection and reasoning based on user interests” method
scales can be found in D2.3.2.

37 of 45

FP7 – 215535

Deliverable 4.3.2

5. Conclusion

In this document, we have investigated various approaches of interleaving reasoning
and selection, which include PION, a framework of interleaving reasoning and query-
based selection, and the approach of ontology appoximation by interleaving reasoning
and language-based selection, and I-ReaSearch, a framework of interleaving reasoning
and user-interest based selection. We have discussed the implementation issues of the
proposed approaches.

• For PION, we have explored the implementation of variants of PION for inter-
leaving reasoning and selection within the LarKC platform, which includes i) the
DIGPION which uses the DIG interface reasoner to call an external PION sys-
tem, ii) the SimplePION which provides basic implementation of the interleaving
of reasoning by an OWLAPI reasoner and selection by syntactic-relevance -based
selection functions, iii) the PIONwtihStopRule which uses a set of stop rules in
the procedure of interleaving reasoning and seletion, and iv) the PIONWorkflow
which is designed to be an interleaving workflow of reasoning and selection within
the LarKC Platform. We have also provided a user guide in the appendix as a
reference manual of the released PION plug-ins and workflow. We are going to
report the experiment of those variant PION for the evaluation of the proposed
approaches in the sequel LarKC deliverable about the evaluation of implemented
reasoner plug-ins.

• For the framework of interleaving reasoning and language-based selection, we
have presented an approach of anytime instance retrieval by ontology approxi-
mation, and discussed the design and the implementation issue with the LarKC
platform.

• For the interleaving framework with user-interest-based selection, we have pre-
sented several concrete selection strategies, discussed the implementation issue
of unifying selection and reasoning with user interests (I-ReaSearch), and re-
ported an initial evaluation on scalability for the proposed methods. The initial
test shows that the approach of interleaving reasoning and user-interest-based
selection can improve the efficiency of reasoning.

38 of 45

FP7 – 215535

Deliverable 4.3.2

References

[1] Owl semantics and abstract syntax. Technical report, 2004.

[2] Sean Bechhofer. The DIG description logic interface: DIG1.0. Technical report,
2002.

[3] Sean Bechhofer. The DIG description logic interface: DIG1.1. Technical report,
2003.

[4] Sean Bechhofer. DIG 2.0 roadmap. Technical report, 2006.

[5] Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG description logic
interface. In International Workshop on Description Logics (DL2003). Rome,
September 2003.

[6] T. Berners-Lee and M. Fischetti. Weaving the Web: The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor. HarperSanFrancisco,
1999.

[7] Alexander Budanitsky and Graeme Hirst. Semantic distance in wordnet: An
experimental, application-oriented evaluation of five measures. In Workshop on
WordNet and Other Lexical Resources, 2nd meeting of the North American Chap-
ter of the Association for Computational Linguistics. Pittsburgh, PA., 2001.

[8] Samir Chopra, Rohit Parikh, and Renata Wassermann. Approximate belief revi-
sion prelimininary report. Journal of IGPL, 2000.

[9] D. Fensel and F. van Harmelen. Unifying reasoning and search to web scale. IEEE
Internet Computing, 11(2):96, 94–95, 2007.

[10] Perry Groot, Heiner Stuckenschmidt, and Holger Wache. Approximating descrip-
tion logic classification for semantic web reasoning. In Asunción Gómez-Pérez
and Jérôme Euzenat, editors, ESWC, volume 3532 of Lecture Notes in Computer
Science, pages 318–332. Springer, 2005.

[11] Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontolo-
gies. In Proceedings of the International Joint Conference on Artificial Intelligence
- IJCAI’05, 2005.

[12] Zhisheng Huang and Frank van Harmelen. Using semantic distances for reasoning
with inconsistent ontolgies. In Proceedings of the 7th International Semantic Web
Conference (ISWC2008), 2008.

[13] Zhisheng Huang and Cees Visser. Extended DIG description logic interface sup-
port for prolog. Deliverable D3.4.1.2, SEKT, 2004.

[14] Zhisheng Huang, Yi Zeng, Stefan Schlobach, Annette den Teije, Frank van
Harmelen, Yan Wang, and Ning Zhong. D4.3.1 - strategies and design for in-
terleaving reasoning and selection of axioms, September 2009. Available from:
http://www.larkc.eu/deliverables/.

39 of 45

FP7 – 215535

Deliverable 4.3.2

[15] Thorsten Liebig, Marko Luther, Olaf Noppens, Mariano Rodriguez, Diego Cal-
vanese, Michael Wessel, Matthew Horridge, Sean Bechhofer, Dmitry Tsarkov, and
Evren Sirin. OWLlink: DIG for OWL2. In OWLED, 2008.

[16] Hansjorg Neth, Lael J. Schooler, Jorg Rieskamp, Jose Quesada, Jie Xiang,
Rifeng Wang, Lijuan Wang, Haiyan Zhou, Yulin Qin, Ning Zhong, and Yi Zeng.
D4.2.2 - analysis of human search strategies, September 2009. Available from:
http://www.larkc.eu/deliverables/.

[17] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation. Arti-
ficial Intelligence, 74(2):249–310, 1995.

[18] S. Schlobach, E. Blaauw, M. El Kebir, A. ten Teije, F. van Harmelen, S. Bortoli,
M. Hobbelman, K. Millian, Y. Ren, S. Stam, P. Thomassen, R. van het Schip,
and W. van Willigem. Anytime classification by ontology approximation. In
Ruzica Piskac et al., editor, Proceedings of the workshop on new forms of reasoning
for the Semantic Web: scalable, tolerant and dynamic, pages 60–74, 2007.

[19] Evren Sirin and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL. In
Christine Golbreich, Aditya Kalyanpur, and Bijan Parsia, editors, OWLED 2007:
Proceedings of the Third International Workshop on OWL: Experiences and Di-
rections, Innsbruck, Austria, volume 258 of CEUR Workshop Proceedings. Sun
SITE Central Europe, 2007.

[20] Heiner Stuckenschmidt. Partial matchmaking using approximate subsumption.
In Proceedings of the Twenty-Second Conference on Artificial Intelligence (AAAI-
07), 2007.

[21] H Wache, P Groot, and H Stuckenschmidt. Scalable instance retrieval for the
semantic web by approximation. Lecture notes in computer science, 3807:245,
2005.

40 of 45

FP7 – 215535

Deliverable 4.3.2

A. PION within the LarKC Platform: User Manual

A.1 Using SPARQL-DL to Express OWL-DL Formulas

We need SPARQL-DL to express the SPARQL queries with the LarKC platform. In
order to translate DL expressions into RDF triples, we use the OWL-DL method which
is recommended in [1]1. Here are several examples of OWL Expressions in SPARQL-
DL:

?- subClassOf(Wine, PotableLiquid)

// to ask whether or not wine is a subclass of potable liquid

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

PREFIX food: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/food#>

ASK

WHERE { wine:Wine rdfs:subClassOf food:PotableLiquid.}

?- subClassOf(Bordeaux, and(SweetWine, TableWine))

// to ask whether or not Bordeaux is a SweetWine and TableWine

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK

wine:Bordeaux rdfs:subClassOf _:x.

_:x owl:interSectionOf _:y1.

_:y1 rdf:first wine:SweetWine.

_:y1 rdf:rest wine:TableWine.

wine:Bordeaux rdf:type owl:Class.}

?- subClassOf(?X, Wine)

// to list all subconcepts of Wine

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX wine:

<http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT ?X

WHERE { ?X rdfs:subClassOf wine:Wine.}

?- subClassOf(Bordeaux, ?X), subClassOf(?X,Wine),

subClassOf(?X,?Y).

PREFIX rdfs:http://www.w3.org/2000/01/rdf-schema#..

..

PREFIX wine:

<http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT ?X ?Y

1http://www.w3.org/TR/owl-semantics/mapping.html

41 of 45

FP7 – 215535

Deliverable 4.3.2

WHERE {

wine:Bordeaux rdfs:subClassOf ?X.

?X rdfs:subClassOf wine:Wine.

?X rdfs:subClassOf ?Y.

?Y rdf:type owl:Class.}

A.2 DIGPION

The procedure for setting up LarKC with a DIG reasoner:

• Check out the LarKC platform itself with the DIG reasoner plugin at the fol-
lowing SourceForge site:

https://larkc.svn.sourceforge.net/svnroot/larkc/trunk

• The LarKC DIG plug-in requires an external DIG reasoner, like Racer, FACT++,
KOAN2, Pellet. Before starting the test, make sure that the external DIG rea-
soner has been installed at your computer(i.e., localhost) and is running at a
known port. The java program DIGReasonerTest.java at the DIG plug-in source
directory provides several typical examples how an external DIG reasoner can
be called to reason with ontologies at the LarKC platform.

Before executing the test program, you can change the following setting in the
program:

String hostname= "localhost";

int port = 8080; //default port for racer

String path = "/";

You can declare the ontology data by the following setting:
The ontology data can be claimed by a code, like this:

String ontologyFileName = "http://www.cs.vu.nl/~huang/

larkc/ontology/wine.rdf";

or

String ontologyFileName = "file:////E:/larkc/ontology/wine.rdf";

if the ontology data is located at the local harddisk.
Using the following test utility to post the query to the external DIG reasoner and

get the answer in the test program:

ReasonerTest(ontologyFileName, query32,

hostname, port, path);

To claim an external DIG reasoner:

42 of 45

FP7 – 215535

Deliverable 4.3.2

DIGReasoner reasoner = new DIGReasoner();

reasoner.hostname = hostname;

reasoner.port = port;

reasoner.path = path;

To conduct a reasoning task:

BooleanInformationSet answer = reasoner.sparqlAsk(sparqlQuery,

graph, contract, context);

Ignoring the contract and the context for the time being.
To test the DIG plug-in with PION, do the following:

1. Launch an external DL reasoner (like Racer) at the port 8000 of the localhost;

2. Launch the external PION at the port 8001 of the localhost;

3. Change the setting of the external DIG server by changing the following line at
the test program: int port = 8001

4. Claim the ontology url and the query;

5. Launch the test utility program in the LarKC platform: ReasonerTest(ontologyFileName,
query, hostname, port, path);

A query example:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX ex: <http://wasp.cs.vu.nl/larkc/ontology/ex#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

ASK

WHERE { ex:themadcow rdf:type ex:vegetarian.}

You can see that PION can return a meaningful answer ’false’. Compare it with
that from a standard DL reasoner. You can see that when querying an inconsistent
ontology, the standard DL reasoner always returns an error message, like this:

<responses xmlns="http://dl.kr.org/dig/2003/02/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://dl.kr.org/dig/2003/02/lang

http://dl-web.man.ac.uk/dig/2003/02/dig.xsd">

<error id="http://wasp.cs.vu.nl/larkc/ontology/ex#themadcow

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://wasp.cs.vu.nl/larkc/ontolog/ex#vegetarian"

message="ABox http://dl.kr.org/dig/kb-1048 is incoherent."/>

</responses>

You can use the PION TestBed page piontest2.htm to select different strategies
for reasoning with inconsistent ontologies by PION: selection functions (syntactic
relevance, concept syntactic relevance, or semantic relevance by google distances),
over-determed processing methods (first maximal consistent set, or path pruning with
Google distances), extension strategies (linear extension or k-extension), which is
shown in Figure A.1.

43 of 45

FP7 – 215535

Deliverable 4.3.2

Figure A.1: PION TestBed

A.3 SimplePION

The program SimplePIONTest.java is an example how to call the SimplePION plug-
in. The method ReasonerTest(OntologyF ileName,Query) of SimplePIONTest is
an utility to get the reasoning answer of the reasoner simplePION by providing an
OWL ontology which is located at a URI and a query which is specified as a string.

The reasoner SimplePION relies on a standard OWLAPI reasoner which is sup-
ported by a Pellet reasoner. Thus, in order to call a SimplePION reasoner, make
sure that the library of OWLAPIreasoner and Pellet reasoner is available at the
classpath.

A.4 PIONwithStopRules

Using the reasoner PIONwithStopRules is similar with that of the reasoner SimplePION .
The program PIONwithStopRules.java is an example which shows how to call the
PIONwithStopRules plug-in in java. The methodReasonerTest(OntologyF ileName,Query)
of PIONwithStopRulesTest is an utility to get the reasoning answer of the reasoner
PIONwithStopRule.

The parameter seletedStopRule of the reasoner plug-in allows us to decide which
stop rule should be used for the stopping checking. The following java code shows how
to make the setting of selectedStopRule with the time cost checking rule:

PIONwithStopRules reasoner = new PIONwithStopRules();

44 of 45

FP7 – 215535

Deliverable 4.3.2

reasoner.seletedStopRule="TimeCostCheckingRule";

In order to use the cardinality checking rule, the string =”TimeCostCheckingRule”
should be replaced with the string ”CardinalityCheckingRule”.

A.5 PIONWorkflow

The PIONWorkflow can be launched from the PION decider which calls two selectors,
SelectOntologyBasedOnQuery for selecting a subontology which is relevant to the
query and SelectOntologyFromOntology for selecting a subontology from an ontology,
and the the reasoner BasicOWLAPIReasoner which provides the standard reasoning
over the selected sub-ontology.

The program PIONWorkflowTest.java is an exmaple how to build a PION work-
flow and make the test. The method PIONWorkflowProcess(OntologyF ileName,Query)
of PIONWorkflowTest is an utility to get the reasoning answer of the reasoning
workflow PIONWorkflow. The OntologyF ileName can be specified as a string like
this:

String ontologyFileName= "http://www.cs.vu.nl/~huang/larkc/ontology/mad_cows.owl";

The query can be specified as a string like this:

String query1 ="PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>"+

"PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>"+

"PREFIX kb: <http://cohse.semanticweb.org/ontologies/people#>" +

"PREFIX owl: <http://www.w3.org/2002/07/owl#>" +

"PREFIX sparqldl: <http://pellet.owldl.com/ns/sdle#>"+

"ASK {"+

"kb:madcow rdfs:subClassOf kb:vegetarian.}";

45 of 45

