
STEP: A Scripting Language for Embodied Agents

Zhisheng Huang, Anton Eliëns and Cees Visser
Vrije University Amsterdam, The Netherlands

{huang,eliens,ctv}@cs.vu.nl

Abstract

In this paper we propose a scripting language, called
STEP, for embodied agents, in particular for their
communicative acts like gestures and postures. Based
on the formal semantics of dynamic logics, STEP has a
solid semantic foundation, in spite of a rich number of
variants of the compositional operators and interaction
facilities on worlds. STEP has been implemented in the
distributed logic programming language DLP, a tool for
the implementation of 3D web agents. In this paper,
we discuss principles of scripting language design for
embodied agents and several aspects of the application
of STEP.

Keywords: embodied agents, virtual environments,
VRML, avatars, humanoids, H-anim, STEP

1 Introduction

Embodied agents are autonomous agents which have
bodies by which the agents can perceive their world
directly through sensors and act on the world directly
through effectors. Embodied agents whose experienced
worlds are located in real environments, are usually
called cognitive robots. Web agents are embodied agents
whose experienced worlds are the Web; typically, they
act and collaborate in networked virtual environments.
In addition, 3D web agents are embodied agents whose
3D avatars can interact with each other or with users via
Web browsers[5].

Embodied agents usually interact with users or each
other via multimodal communicative acts, which can
be non-verbal or verbal. Gestures, postures and facial
expressions are typical non-verbal communicative acts.
In general, specifying communicative acts for embodied
agents is not easy; they often require a lot of geometri-
cal data and detailed movement equations, say, for the
specification of gestures.

In this paper we propose the scripting language STEP
(Scripting Technology for Embodied Persona), in par-
ticular for communicative acts of embodied agents. At
present, we focus on aspects of the specification and
modeling of gestures and postures for 3D web agents.

However, STEP can be extended for other communica-
tive acts, like facial expressions, speech, and other types
of embodied agents, like cognitive robots. Scripting lan-
guages are to a certain extent simplified languages which
ease the task of computation and reasoning. One of
the main advantages of using scripting languages is that
the specification of communicative acts can be separated
from the programs which specify the agent architecture
and mental state reasoning. Thus, changing the spec-
ification of communicative acts doesn’t require to re-
program the agent.

The avatars of 3D web agents are built in the Virtual
Reality Modeling Language (VRML). These avatars are
usually humanoid-like ones. The humanoid animation
working group1 proposes a specification, called H-anim
specification, for the creation of libraries of reusable hu-
manoids in Web-based applications as well as authoring
tools that make it easy to create humanoids and ani-
mate them in various ways. H-anim specifies a standard
way of representing humanoids in VRML. We have im-
plemented the proposed scripting language for H-anim
based humanoids in the distributed logic programming
language DLP [1].2

DLP is a tool for the implementation of 3D intelligent
agents [6].3 In this paper, we discuss how STEP can be
used for embodied agents. STEP introduces a Prolog-
like syntax, which makes it compatible with most stan-
dard logic programming languages, whereas the formal
semantics of STEP is based on dynamic logic [4]. Thus,
STEP has a solid semantic foundation, in spite of a rich
number of variants of the compositional operators and
interaction facilities on worlds.

2 Principles

We design the scripting language primarily for the spec-
ification of communicative acts for embodied agents.
Namely, we separate external-oriented communicative
acts from internal changes of the mental states of em-
bodied agents because the former involves only geomet-
rical changes of the body objects and the natural tran-

1http://h-anim.org
2http://www.cs.vu.nl/∼eliens/projects/logic/index.html.
3http://wasp.cs.vu.nl/wasp.



sition of the actions, whereas the latter involves more
complicated computation and reasoning. Of course, a
question is: why not use the same scripting language
for both external gestures and internal agent specifica-
tion? Our answer is: the scripting language is designed
to be a simplified, user-friendly specification language
for embodied agents, whereas the formalization of intel-
ligent agents requires a powerful specification and pro-
gramming language. It’s not our intention to design a
scripting language with fully-functional computation fa-
cilities, like other programming languages as Java, Pro-
log or DLP. A scripting language should be interoperable
with a fully powered agent implementation language, but
offer a rather easy way for authoring. Although commu-
nicative acts are the result of the internal reasoning of
embodied agents, they do not need the same expressive-
ness of a general programming language. However, we
do require that a scripting language should be able to
interact with mental states of embodied agents in some
ways, which will be discussed in more detail later.

We consider the following design principles for a script-
ing language.

Principle 1: Convenience

As mentioned, the specification of communicative acts,
like gestures and facial expressions usually involve a lot
of geometrical data, like using ROUTE statements in
VRML, or movement equations, like those in computer
graphics. A scripting language should hide those geo-
metrical difficulties, so that non-professional authors can
use it in a natural way. For example, suppose that au-
thors want to specify that an agent turns his left arm
forward slowly. It can be specified like this:

turn(Agent, left_arm, front, slow)

It should not be necessary to specify it as follows,
which requires knowledge of a coordination system, ro-
tation axis, etc.

turn(Agent, left_arm, rotation(1,0,0,1.57), 3)

One of the implications of this principle is that em-
bodied agents should be aware of their context. Namely,
they should be able to understand what certain indica-
tions mean, like the directions ’left’ and ’right’, or the
body parts ’left arm’, etc.

Principle 2: Compositional Semantics

Specification of composite actions, based on existing
components. For example, an action of an agent which
turns his arms forward slowly, can be defined in terms of
two primitive actions: turn-left-arm and turn-right-arm,
like:

par([turn(Agent, left_arm, front, slow),

turn(Agent, right_arm, front, slow)])

Typical composite operators for actions are sequence
action seq , parallel action par, repeat action repeat,
which are used in dynamic logics [4].

Principle 3: Re-definability

Scripting actions (i.e.,composite actions), can be defined
in terms of other defined actions explicitly. Namely,
the scripting language should be a rule-based specifi-
cation system. Scripting actions are defined with their
own names. These defined actions can be re-used for
other scripting actions. For example, if we have defined
two scripting actions run and kick, then a new action
run then kick can be defined in terms of run and kick :

run_then_kick(Agent)=

seq([script(run(Agent)), script(kick(Agent))]).

which can be specified in a Prolog-like syntax:

script(run_then_kick(Agent), Action):-

Action = seq([script(run(Agent)),script(kick(Agent))]).

Principle 4: Parametrization

Scripting actions can be adapted to be other actions.
Namely, actions can be specified in terms of how these
actions cause changes over time to each individual degree
of freedom, which is proposed by Perlin and Goldberg in
[9]. For example, suppose that we define a scripting ac-
tion run: we know that running can be done at different
paces. It can be a ’fast-run’ or ’slow-run’. We should
not define all of the run actions for particular paces. We
can define the action ’run’ with respect to a degree of
freedom ’tempo’. Changing the tempo for a generic run
action should be enough to achieve a run action with dif-
ferent paces. Another method of parametrization is to
introduce variables or parameters in the names of script-
ing actions, which allows for a similar action with differ-
ent values. That is one of the reasons why we introduce
Prolog-like syntax in STEP.

Principle 5: Interaction

Scripting actions should be able to interact with, more
exactly, perceive the world, including embodied agents’
mental states, to decide whether or not it should con-
tinue the current action, or change to other actions, or
stop the current action. This kind of interaction modes
can be achieved by the introduction of high-level inter-
action operators, as defined in dynamic logic. The op-
erator ’test’ and the operator ’conditional’ are useful for
the interaction between the actions and the states.

3 Scripting Language STEP

In this section, we discuss the general aspects of the
scripting language STEP.



Figure 1: Direction Reference for Humanoid

3.1 Reference Systems

Direction Reference The reference system in STEP
is based on the H-anim specification: namely, the initial
humanoid position should be modeled in a standing po-
sition, facing in the +Z direction with +Y up and +X
to the humanoid’s left. The origin 〈0, 0, 0〉 is located at
ground level, between the humanoid’s feet. The arms
should be straight and parallel to the sides of the body
with the palms of the hands facing inwards towards the
thighs.

Based on the standard pose of the humanoid, we can
define the direction reference system as sketched in fig-
ure 1. The direction reference system is based on these
three dimensions: front vs. back which corresponds to
the Z-axis, up vs. down which corresponds to the Y-
axis, and left vs. right which corresponds to the X-axis.
Based on these three dimensions, we can introduce a
more natural-language-like direction reference scheme,
say, turning left-arm to ’front-up’, is to turn the left-
arm such that the front-end of the arm will point to
the up front direction. Figure 2 shows several combina-
tions of directions based on these three dimensions for
the left-arm. The direction references for other body
parts are similar. These combinations are designed for
convenience and are discussed in Section 2. However,
they are in general not sufficient for more complex ap-
plications. To solve this kind of problem, we introduce
interpolations with respect to the mentioned direction
references. For instance, the direction ’left front2’ is re-

Figure 2: Combination of the Directions for Left Arm

ferred to as one which is located between ’left front’ and
’left’, which is shown in Figure 2. Natural-language-like
references are convenient for authors to specify scripting
actions, since they do not require the author to have a
detailed knowledge of reference systems in VRML. More-
over, the proposed scripting language also supports the
orginal VRML reference system, which is useful for expe-
rienced authors. Directions can also be specified to be a
four-place tuple 〈X,Y, Z,R〉, say, rotation(1, 0, 0, 1.57).

Body Reference An H-anim specification contains a
set of Joint nodes that are arranged to form a hierarchy.
Each Joint node can contain other Joint nodes and may
also contain a Segment node which describes the body
part associated with that joint. Each Segment can also
have a number of Site nodes, which define locations rel-
ative to the segment. Sites can be used for attaching
accessories, like hat, clothing and jewelry. In addition,
they can be used to define eye points and viewpoint lo-
cations. Each Segment node can have a number of Dis-
placer nodes, that specify which vertices within the seg-
ment correspond to a particular feature or configuration
of vertices.

Figure 3 shows several typical joints of humanoids.
Therefore, turning body parts of humanoids implies the
setting of the relevant joint’s rotation. Body moving
means the setting of the HumanoidRoot to a new posi-
tion. For instance, the action ’turning the left-arm to
the front slowly’ is specified as:

turn(Agent, l_shoulder, front, slow)



Figure 3: Typical Joints for Humanoid

Time Reference STEP has the same time reference
system as that in VRML. For example, the action turn-
ing the left arm to the front in 2 seconds can be specified
as:

turn(Agent, l_shoulder, front, time(2, second))

This kind of explicit specification of duration in script-
ing actions does not satisfy the parametrization princi-
ple. Therefore, we introduce a more flexible time refer-
ence system based on the notions of beat and tempo. A
beat is a time interval for body movements, whereas the
tempo is the number of beats per minute. By default,
the tempo is set to 60. Namely, a beat corresponds to a
second by default. However, the tempo can be changed.
Moreover, we can define different speeds for body move-
ments, say, the speed ’fast’ can be defined as one beat,
whereas the speed ’slow’ can be defined as three beats.

3.2 Primitive Actions and Composite
Operators

Turn and move are the two main primitive actions for
body movements. Turn actions specify the change of the
rotations of the body parts or the whole body over time,
whereas move actions specify the change of the positions
of the body parts or the whole body over time. A turn
action is defined as follows:

turn(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like di-
rection like ’front’ or a rotation value like ’rota-
tion(1,0,0,3.14)’, Duration can be a speed name like ’fast’
or an explicit time specification, like ’time(2,second)’.

A move action is defined as:

move(Agent,BodyPart,Direction,Duration)

where Direction can be a natural-language-like direc-
tion, like ’front’, a position value like ’position(1,0,10)’,
or an increment value like ’increment(1,0,0)’.

Here are typical composite operators for scripting ac-
tions:

• Sequence operator ’seq’: the action seq([Action1,

...,Actionn]) denotes a composite action in which
Action1, ...,and Actionn are executed sequentially,
like:

seq([turn(agent,l_shoulder,front,fast),

turn(agent,r_shoulder,front,fast)])

• Parallel operator ’par’: the action par([Action1,

...,Actionn]) denotes a composite action in which
Action1, ...,and Actionn are executed simultaneously.

• non-deterministic choice operator ’choice’: the ac-
tion choice([Action1, ...,Actionn]) denotes a com-
posite action in which one of the Action1, ...,and
Actionn is executed.

• repeat operator ’repeat’: the action repeat(Action,

T) denotes a composite action in which the Action is
repeated T times.

3.3 High-level Interaction Operators

When using high-level interaction operators, scripting
actions can directly interact with internal states of em-
bodies agents or with external states of worlds. These in-
teraction operators are based on a meta language which
is used to build embodied agents, say, in the distributed
logic programming language DLP. In the following, we
use lower case Greek letters φ, ψ, χ to denote formulas
in the meta language. Examples of several higher-level
interaction operators:

• test: test(φ), check the state φ. If φ holds then skip,
otherwise fail.

• execution: do(φ), make the state φ true, i.e. execute
φ in the meta language.

• conditional: if then else(φ,action1,action2).

• until: until(action,φ): take action until φ holds.

We have implemented the scripting language STEP
in the distributed logic programming language DLP. We
discuss the implementation issues in the paper [7].



Figure 4: Walk

4 Examples

4.1 Walk and its Variants

A walking posture can be simply expressed as a move-
ment which exchanges the following two main poses: a
pose in which the left-arm/right-leg move forward while
the right-arm/left-leg move backward, and a pose in
which the right-arm/left-leg move forward while the left-
arm/right-leg move backward. The main poses and their
linear interpolations are shown in Figure 4. The walk ac-
tion can be described in the scripting language as follows:

script(walk_pose(Agent), Action):-

Action = seq([par([

turn(Agent,r_shoulder,back_down2,fast),

turn(Agent,r_hip,front_down2,fast),

turn(Agent,l_shoulder,front_down2,fast),

turn(Agent,l_hip,back_down2,fast)]),

par([turn(Agent,l_shoulder,back_down2,fast),

turn(Agent,l_hip,front_down2,fast),

turn(Agent,r_shoulder,front_down2,fast),

turn(Agent,r_hip,back_down2,fast)])]).

Thus, a walk step can be described to be as a paral-
lel action which consists of the walking posture and the
moving action (i.e., changing position) as follows:

script(walk_forward_step(Agent),Action):-

Action= par([script_action(walk_pose(Agent)),

move(Agent,front,fast)]).

The step length can be a concrete value. For example,
for the step length with 0.7 meter, it can be defined as
follows:

script(walk_forward_step07(Agent),Action):-

Action= par([script_action(walk_pose(Agent)),

move(Agent,increment(0.0,0.0,0.7),fast)]).

Alternatively, the step length can also be a variable
like:

script(walk_forward_step0(Agent,StepLength),Action):-

Action = par([script_action(walk_pose(Agent)),

move(Agent,increment(0.0,0.0,StepLength),fast)]).

Therefore, the walking forward N steps with the
StepLength can be defined as follows:

script(walk_forward(Agent,StepLength,N),Action):-

Action = repeat(script_action(

walk_forward_step0(Agent,StepLength)),N).

Figure 5: Poses of Run

As mentioned above, the animations of the walk based
on these definitions are just simplified and approximated
ones. As analysed in [3], a realistic animation of the
walk motions of human figure involves a lot of compu-
tations which rely on a robust simulator where forward
and inverse kinematics are combined with automatic col-
lision detection and response. We do not want to use the
scripting language to achieve a fully realistic animation
of the walk action, because they are seldom necessary for
most web applications. However, we would like to point
out that there does exist the possibility to accommodate
some inverse kinematics to improve the realism by using
the scripting language. See the paper [7] for details.

4.2 Run and its Deformation

The action ’run’ is similar to ’walk’, however, with a
bigger wave of the lower-arms and the lower-legs, which
is shown in Figure 5a. As we can see from the fig-
ure, the left lower-arm points to the direction ’front-
up’ when the left upper-arm points to the direction
’front down2’ during the run. Consider the hierarchies
of the body parts, we should not use the primitive ac-
tion turn(Agent, l elbow, front up, fast) but the primi-
tive action turn(Agent, l elbow, front, fast), for the di-
rection of the left lower-arm should be defined with re-
spect to the default direction of its parent body part, i.e.,
the left arm (more exactly, the joint l shoulder). That
kind of re-direction would not cause big difficulties for
authoring, for the correct direction can be obtained by
reducing the directions of its parent body parts to be the
default ones. As we can see in Figure 5b, the lower-arm
actually points to the direction ’front’.

The action ’run pose’ can be simply defined as an ac-
tion which starts with a basic run pose as shown in Fig-
ure 5b and then repeat the action ’walk pose’ forN times
as follows:

script(basic_run_pose(Agent), Action):-

Action=par([turn(Agent,r_elbow,front,fast),

turn(Agent, l_elbow, front, fast),

turn(Agent, l_hip, front_down2, fast),

turn(Agent, r_hip, front_down2, fast),

turn(Agent, l_knee, back_down, fast),

turn(Agent, r_knee, back_down, fast)]).

script(run_pose(Agent,N),Action):-



Action = seq([script_action(basic_run_pose(Agent)),

repeat(script_action(walk_pose(Agent)),N)]).

Therefore, the action running forward N steps with
the StepLength can be defined in the scripting language
as follows:

script(run(Agent, StepLength,N),Action):-

Action=seq([script_action(basic_run_pose(Agent)),

script_action(walk_forward(Agent,StepLength,N))]).

Actually, the action ’run’ may have a lot of variants.
For instances, the lower-arm may point to different direc-
tions. They would not necessarily point to the direction
’front’. Therefore, we may define the action ’run’ with
respect to certain degrees of freedom. Here is an example
to define a degree of freedom with respect to the angle
of the lower arms to achieve the deformation.

script(basic_run_pose_elbow(Agent,Elbow_Angle),Action):-

Action = par([

turn(Agent,r_elbow,rotation(1,0,0,Elbow_Angle),fast),

turn(Agent,l_elbow,rotation(1,0,0,Elbow_Angle),fast),

turn(Agent,l_hip,front_down2,fast),

turn(Agent,r_hip,front_down2,fast),

turn(Agent,l_knee,back_down,fast),

turn(Agent,r_knee,back_down,fast)]).

script(run_e(Agent,StepLength,N,Elbow_Angle),Action):-

Action = seq([script_action(

basic_run_pose_elbow(Agent,Elbow_Angle)),

script_action(walk_forward(Agent, StepLength, N))]).

5 Conclusions

In this paper we have proposed the scripting language
STEP for embodied agents, in particular for their com-
municative acts, like gestures and postures. Moreover,
we have discussed principles of scripting language design
for embodied agents and several aspects of the applica-
tion of the scripting language.

Our work is close to Perlin and Goldberg’s Improv
system. In [9], Perlin and Goldberg propose Improv,
which is a system for scripting interactive actors in vir-
tual worlds. STEP is different from Perlin and Gold-
berg’s in the following aspects: First, STEP is based
on the H-anim specification, thus, VRML-based, which
is convenient for Web applications. Secondly, we sepa-
rate the scripting language from the agent architecture.
Therefore, it’s relatively easy for users to use the script-
ing language.

Prendinger et al. are also using a Prolog-based
scripting approach for animated characters but they fo-
cus on higher-level concepts such as affect and social
context[10]. STEP shares a number of interests with
the VHML(Virtual Human Markup Language) commu-
nity4, which is developing a suite of markup language for

4http://www.vhml.org

expressing humanoid behavior, including facial anima-
tion, body animation, speech, emotional representation,
and multimedia. We see this activity as complemen-
tary to ours, since our research proceeds from technical
feasibility, that is how we can capture the semantics of
humanoid gestures and movements within our dynamic
logic, which is implemented on top of DLP.

We are also working on the development of XSTEP,
the XML-based STEP markup language [8], so that the
definitions of scripting actions can be in separated XML-
based text files. Based on that, embodied agents can ex-
change their information of their scripting actions more
efficiently over the Web.

References

[1] A. Eliëns, DLP, A Language for Distributed Logic
Programming, Wiley, 1992.

[2] A. Eliëns, Principles of Object-Oriented Software
Development, Addison-Wesley, 2000.

[3] F. Faure, et al., Dynamic analysis of human walk-
ing, Proceedings of the 8th Workshop on Computer
Animation and Simulation, Budapest, 1997.

[4] D. Harel, Dynamic Logic, Handbook of Philosophical
Logic, Vol. II, D. Reidel Publishing Company, 1984,
497-604.

[5] Z. Huang, A. Eliëns, A. van Ballegooij, P. de Bra,
A Taxonomy of Web Agents, Proceedings of the
11th International Workshop on Database and Ex-
pert Systems Applications, IEEE Computer Society,
765-769, 2000.

[6] Z. Huang, A. Eliëns, and C. Visser, Programma-
bility of Intelligent Agent Avatars, Proceedings of
Agents’01 Workshop on Embodied Agents, 2001.

[7] Z. Huang, A. Eliëns, and C. Visser, STEP: a Script-
ing Language for Embodied Agents(full version),
http://wasp.cs.vu.nl/step/paper/script.pdf

[8] Z. Huang, A. Eliëns, and C. Visser, XSTEP:
an XML-based Scripting Language for Embodied
Agents, in preparation, 2002.

[9] K. Perlin, and A. Goldberg, Improv: A System
for Scripting Interactive Actors in Virtual Worlds,
ACM Computer Graphics, Annual Conference Se-
ries, 205-216, 1996.

[10] H. Prendinger, S. Descamps, and M. Ishizuka,
Scripting affective communication with life-like
characters in web-based interaction systems, Jour-
nal of Applied Artificial Intelligence, to appear.


