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Abstract

Consistent query answering over description logic-based ontologies is an important topic in ontol-
ogy engineering as it can provide meaningful answers to queries posed over inconsistent ontologies.
Current approaches for dealing with this problem usually consist of two steps: the first step is ex-
tracting some consistent sub-ontologies of an inconsistent ontology, then posing the query over these
sub-ontologies. In this paper, we propose an alternative approach for consistent query answering
over DL-Lite ontologies based on four-valued semantics, where DL-Lite is a family of tractable DLs.
We give an algorithm to compute answers to a query over inconsistent DL-Lite ontologies and show
that it is tractable. In particular, it is PTime in the size of TBox, and LOGSPACE in the size of ABox.

1 Introduction

As a shared conceptualization of a particular domain, ontologies play an important role for the success
of the Semantic Web [3]. Description Logics (DLs) are considered as important formal description
languages for specifying ontologies. They provide logical underpinning of Web Ontology Language
(OWL). For example, the expressive DL SHOIN (D) underpins OWL DL, which is the key language
of OWL. However, expressive DLs suffer from worst-case exponential time behavior of reasoning [2]
which may hinder practical applications to very large real life ontologies. As an important tractable
DL family, DL-Lite can keep all the reasoning tasks with polynomial time complexity in the size of the
ontology [5].

As the size of ontologies grows and applications become more complex, inconsistencies frequently
occur within the ontology lifecycle, such as ontology construction, ontology evolution and ontology
merging. However, conclusions drawn from an inconsistent ontology by classical inference may be
completely meaningless according the fact ex contradictione quodlibet [6].

For consistent query answering over inconsistent databases or inconsistent propositional knowledge
bases, some approaches are known [11, 1, 4, 7]. The approaches in [1, 4] mainly rely on the notion
of repair for a database instance that may violate integrity constraints specified over its schema. And
also consistent query answering of conjunctive queries expressed over database schemas with integrity
constraints is a coNP-complete problem in data complexity [1]. Villadsen [11] proposed a many-valued
paraconsistent logic for query answering based on a simple notion of indeterminacy. However he only
focus on symbolic logic and mainly discuss instance checking. Lembo et al. [7] proposed an approach
for consistent instance checking based on an inconsistency-tolerant semantics. Their method relies on the
notion of repair by deleting some inconsistent membership assertions, which will lead to the information
loss. The above approaches for dealing with the problem of consistent query answering over inconsistent
ontologies usually consist of two steps: the first step is extracting some consistent sub-ontologies of an

1



Paraconsistent Query Answering Over DL-Lite Ontologies L. Zhou et al.

inconsistent ontology, then posing the query over these sub-ontologies. Lembo et al. [7] have shown that
their approach to consistent conjunctive query answering over inconsistent DL-Lite ontologies is general
intractable w.r.t. data complexity. Since DL-Lite is a tractable DLs which is suitable for dealing with
large amount of data, finding a tractable approach to consistent query answering is an important problem
for DL-Lite.

In this paper, we propose a tractable approach to consistent query answering over DL-Lite ontologies
based on four-valued semantics [10, 8]. We first give a four-valued semantics for DL-Lite, and then, by
extending the notion of chase in [5], we give a notion of 4-chase based on four-valued semantics. 4-
chase can be used for constructing a four-valued model for DL-Lite. Finally, we present an algorithm for
consistent query answering over DL-Lite whose computational complexity is polynomial with respect to
the size of the TBox.

The rest of the paper is organized as follows: Section 2 presents some basic notions for DL-Lite.
Section 3 gives a four-valued semantics for DL-Lite. Section 4 presents an algorithm to compute a four-
valued model and to compute the certain answers to a query over an inconsistent DL-Lite ontology. We
conclude our paper in Section 5.

2 Preliminaries

DL-Lite is a family of Description Logics (DLs) used to capture some of the most popular conceptual
modeling formalisms, such as Entity-Relationship model and UML class diagrams, while preserving the
tractability of the most important reasoning tasks, such as ontology satisfiability. We mainly consider
two important DLs in DL-Lite family: DL-LiteF and DL-LiteR[5].

The language of DL-Litecore is the core language for DL-LiteF and DL-LiteR , in which concepts
and roles are formed according to the following syntax:

B −→ A | ∃R R −→ P | P− C −→ B | ¬B E −→ R | ¬R
where A and P denote an atomic concept and an atomic role respectively; B denotes a basic concept

(i.e., a concept of the form A, ∃R); R denotes a basic role (i.e., a role of the form P , P−), where P−

denotes the inverse of the atomic role; C denotes a general concept (i.e., a concept of the form B, ¬B),
whereas E denotes a general role (i.e., a concept of the form R, ¬R).

A DL-Lite ontology consists of a TBox and an ABox. A DL-Litecore TBox is a set of inclusion
axioms of the form B ⊑ C. A DL-Litecore ABox is a set of membership assertions on atomic concepts
and atomic roles: A(a), P (a, b), where a and b are constants.

DL-LiteR extends DL-Litecore with the ability of specifying inclusion assertions between roles of the
form R ⊑ E, where R and E are defined as above. DL-LiteF extends DL-Litecore with the ability of
specifying functionality on roles or on their inverses. Assertions used for this purpose are of the form
(funct R). Hereinafter, we use the term DL-Lite to refer to either DL-LiteR or DL-LiteF , we call positive
inclusions(PIs) assertions of the form B1 ⊑ B2 or of the form R1 ⊑ R2, whereas we call negative
inclusions(NIs) assertions of the form B1 ⊑ ¬B2 or R1 ⊑ ¬R2.

The semantics of DL-Lite is defined via a model-theoretic semantics, which explicates the relation-
ship between the language syntax and the model of a domain: An interpretation I = (∆I , ·I), consisting
of a non-empty interpretation domain ∆I and an interpretation function ·I , which maps from individuals,
concepts and roles to elements of the domain, subsets of the domain and binary relations on the domain,
respectively. Given an interpretation I , we say that I satisfies a concept inclusion axiom B ⊑ C (resp.,
a role inclusion axiom R ⊑ S) if BI ⊆ CI (resp., RI ⊆ SI ). I satisfies a function assertion (funct R)
if ∀d, e, e′ , (d, e) ∈ RI ∧ (d, e

′
) ∈ RI → e = e

′
. Furthermore, I satisfies an atomic concept assertion

A(a) (resp., an atomic role assertion P (a, b)) if aI ∈ AI (resp., (aI , bI) ∈ P I ). An interpretation I
is called a model of an ontology O, iff it satisfies each axiom and each assertion in O. An ontology is
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satisfiable if it has at least one model. An ontology K logically implies an assertion α, written K |= α,
if all models of K are also models of α. The unique name assumption on constants [2] is adapted by
DL-Lite. Furthermore, DL-LiteR has the finite model property, that is, if a DL-LiteR is consistent, then
it has a classical model whose domain is finite [2, 5]. However DL-LiteF does not have finite model
property [5].

Calvanese et al. [5] have given a novel interpretation about A denoted as db(A) = ⟨∆db(A), .db(A)⟩
which is defined as follows:

• ∆db(A) is the nonempty set consisting of all constants occurring in A;

• adb(A) = a, for each constant a;

• Adb(A) = {a | A(a) ∈ A}, for each atomic concept A;

• P db(A) = {(a1, a2) | P (a1, a2) ∈ A}, for each atomic role P .

A union of conjunctive queries (UCQ) q over a DL-Lite ontology K is an expression of the form
q(x⃗) ←

∨
i=1,···n

∃y⃗i.conji(x⃗, y⃗i), where each conji(x⃗, y⃗i) is a conjunction of atoms and equalities, with

free variables x⃗ and y⃗i [5, 7]. Variables in x⃗ are called distinguished, and the size of x⃗ is called the arity
of q. Atoms in each conji are of the form A(z) or P (z1, z2), where A and P are respectively an atomic
concept and an atomic role of K, and z, z1, z2 are either constants in K or variables. A Boolean UCQ
is a query with arity 0, written simply as a sentence of the form

∨
i=1,···n ∃y⃗i.conji(y⃗i). A UCQ with a

single conjunction of atoms is called conjunctive query (CQ). Let q be a Boolean UCQ over a DL-Lite
ontology K. We say that q is entailed by K, and write K |= q, if, for every modelM of K,M |= q. Let
q be a non-Boolean UCQ of arity n overK, and let t⃗ be an n-tuple of constants. We say that t⃗ is a certain
answer to q in K if K |= q(⃗t), where q(⃗t) is the sentence obtained from the body of q by replacing its
distinguished variables by constants in t⃗. We denote by Ans(q,K) the set of certain answers to q in K.

In order to compute Ans(q,K), Calvanese et al. [5] have proposed an algorithm which is used to
compute the perfect reformulation of a conjunctive query q, called PerfectRef, which takes as input a
UCQ q and a DL-Lite TBox T . Roughly speaking, in PerfectRef, all positive inclusions in T are used
as rewriting rules, iteratively applied from right to left to atoms occurring in the query, thus allowing
for compiling away in the rewriting the intensional knowledge of T that is relevant for answering q.
We refer the reader to [5] for further details instead of giving here the exact definition of the algorithm
PerfectRef. Let us see an example.

Example 1. Given a DL-Lite ontology K = ⟨T ,A⟩, where T ={PhDStud ⊑ Stud,PhDStud ⊑
Employee, Stud ⊑ ¬Employee},A = {PhDStud(a)}. Consider a query q(x) = Stud(x). Now, let us
see the Execution of the algorithm PerfectRef. Because the atom Stud(x) can be applied to the PI
PhDStud ⊑ Stud, we obtain a new query q(x) = PhDStud(x). So the result returned by the algorithm
is the union of the following query {Stud(x), PhDStud(x)}.

After query rewriting by DL-Lite reasoners [5], query answering over DL-Lite ontologies can be
carried out by an SQL engine, so as to take advantage of existing query optimization strategies and
algorithms provided by modern database management systems.

3 Four-valued Semantics for DL-Lite

For a given domain ∆ and a conceptA (resp., R), a four-valued interpretation over ∆ assigns toA (resp.,
R) an extended truth value ⟨AP , AN ⟩ (resp., ⟨RP , RN ⟩), where AP is the subset of ∆ (resp., RP is the
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Table 1: Four-valued semantics of DL-Lite
Constructor Semantics

A AI = ⟨AP , AN ⟩,where AP , AN ⊆ ∆I

R RI = ⟨RP , RN ⟩,where RP , RN ⊆ ∆I ×∆I

R− (R−)I = ⟨R−
P , R

−
N ⟩,where R−

P , R
−
N represent

the inverse relations on RP and RN ,respectively.
¬A (¬A)I = ⟨AN , AP ⟩
¬R (¬R)I = ⟨RN , RP ⟩
∃R (∃R)I = ⟨{x | ∃y ∈ ∆I , (x, y) ∈ RI

P },
{x | ∀y ∈ ∆I , (x, y) ∈ RI

N}⟩
¬∃R (¬∃R)I = ⟨{x | ∀y ∈ ∆I , (x, y) ∈ RI

N},
{x | ∃y ∈ ∆I , (x, y) ∈ RI

P }⟩
= (=)I = ⟨=P ,=N ⟩, where =P ,=N∈ ∆I ×∆I

subset of ∆×∆) that supportsA (resp.,R) to be true andAN is the subset of ∆ (resp.,RN is the subset of
∆×∆) that supports A (resp., R) to be false. We denote proj+(⟨P,N⟩) = P and proj−(⟨P,N⟩) = N
[8]. The four-valued semantics of DL-Lite is given by means of an interpretation I = (∆I , ·I) consisting
of a non-empty interpretation domain ∆I and an interpretation function ·I satisfying the conditions [9] in
Table 1. In Table 1, we introduce four-valued semantics to “=” to represent the four-valued semantics of
a functionality assertion. For any given domain ∆, we assign to “=” an extended truth value ⟨=P ,=N ⟩,
where “=P ” stands for the set of pairs of constants which are equal and “=N ” stands for the set of pairs
of constants which are not equal. The UNA can be expressed as ∀x, y ∈ ∆db(A), (x, y) ∈ proj−((=)I).

Based on the four-valued semantics, there are four truth values for membership assertions. The four
truth values are true, false, contradictory and unkown, we use the symbols t, f,B,N to denote them
respectively [8]. The corresponding four-valued semantics for concept assertions is given as follows:

Definition 1. [8] For any given instance a ∈ ∆I and concept name A,

• AI(a) = t, iff a ∈ proj+(AI) and a /∈ proj−(AI);

• AI(a) = f , iff a /∈ proj+(AI) and a ∈ proj−(AI);

• AI(a) = B, iff a ∈ proj+(AI) and a ∈ proj−(AI);

• AI(a) = N, iff a /∈ proj+(AI) and a /∈ proj−(AI).

The corresponding four-valued semantics for role assertion (or equality “=”) can be defined in a similar
way.

Given a four-valued interpretation I , we say that I satisfies a concept inclusion axiom B ⊑ C (resp.,
a role inclusion axiom R1 ⊑ R2) if proj+(BI) ⊆ proj+(CI) (resp., proj+(RI

1) ⊆ proj+(RI
2)).

I satisfies a function assertion (functP ) if ∀x, y, z, (x, y) ∈ proj+(P I) ∧ (x, z) ∈ proj+(P I) →
(y, z) ∈ proj+((=)I). Furthermore, I satisfies an atomic concept assertion A(a) (resp., an atomic role
assertion P (a, b)) if aI ∈ proj+(AI) (resp., (aI , bI) ∈ proj+(P I)). A four-valued model of a DL-
Lite ontology K is a four-valued interpretation I which satisfies each assertion and each axiom in K. A
DL-Lite ontology is four-valued satisfiable (unsatisfiable) if there exists (does not exist) such a model.

Example 2. [12] Given a DL-Lite ontology K = ⟨T ,A⟩, where T ={PhDStud ⊑ Stud,PhDStud ⊑
Employee, Stud ⊑ ¬Employee, Stud ⊑ ∃hasTutor, (funct hasTutor)},A = {PhDStud(a), hasTutor(a, b),
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hasTutor(a, c)}. We can find that it is an inconsistent ontology. Consider the following four-valued inter-
pretation I = (∆I , .I), where ∆I = {a, b, c}, PhDStudI = ⟨{a},Ø⟩, StudI = ⟨{a}, Ø⟩, EmployeeI =
⟨{a},{a}⟩, hasTutorI = ⟨{(a, c), (a, b)},Ø⟩, (=)I = ⟨{(a, a),(b, b),(c, c),(b, c)}, {(a, b),(a, c),(b, c)}⟩.
We can find that I is a four-valued model of K and PhDStudI(a) = t, StudI(a) = t,EmployeeI(a) = B
and (=)I(b, c) = B. It is easy to obtain four-valued semantics for other atomic assertions.

4 Query answering over DL-Lite based on four-valued semantics

In this section, we mainly discuss how to do paraconsistent query answering over an inconsistent DL-
Lite ontology. Ma et al. [9] have proposed a method for reasoning with inconsistent DL-Lite ontologies
through reducing an inconsistent ontology under four-valued semantics to a consistent one under classical
semantics. One may think that we can also apply the reduction method to an inconsistent ontology and
then do query answering over the resulting ontology. However, this solution has some limitations. When
transforming an inconsistent ontology to a consistent one, we may need to introduce some new axioms.
Therefore, the size of resulting ontology may be much bigger than that of original ontology, this is not
desirable for very large real life ontologies. Thus, we adapt the method for query answering in DL-Lite
by considering four-valued semantics and propose a polynomial time algorithm for answering unions of
conjunctive queries over inconsistent DL-Lite ontologies.

4.1 Four-valued canonical interpretation

Let us first see the answers or the certain answers to a query over a DL-Lite ontology under four-valued
semantics which will be used in the following properties.

Definition 2 (4-Ans). Let K = ⟨T ,A⟩ be a DL-Lite ontology, I be a four-valued model of K, and
q(x⃗) be a CQ ∃y⃗.conj(x⃗, y⃗) or UCQ

∨
i=1,...,n ∃yi.conji(x⃗, y⃗i). The answer to q(x⃗) over I , denoted qI ,

is the set of tuples t⃗ of constants of A such that the formula ∃y⃗.conj(⃗t, y⃗) or
∨

i=1,...,n ∃yi.conji(⃗t, y⃗i)
evaluates to t or B in I . The certain answer to q(x⃗), denoted 4-Ans(q,K), is the set of tuples t⃗ of
constants of A such that t⃗ ∈ qI , for every four-valued model I of K.

Example 3 (Example 2 contd.). Let us consider a query q(x) = PhDStud(x) ∧ ∃y.hasTutor(x, y),
we can obtain qI = {a} and 4-Ans(q,K) = {a}.

Notice that by Definition 2, 4-Ans(q,K) is finite because K is finite, and hence the number of con-
stants appearing in A is finite. We also notice that the tuple t⃗ can be empty tuple in the case when q is
a Boolean query. More precisely, in this case the set 4-Ans(q,K) consists of the only empty tuple if and
only is the query q is t or B in every four-valued model of K.

Under the four-valued semantics, we will use a special membership assertions of the form ¬A(a)
or ¬R(a, b) which is not supported in DL-Lite under the classical semantics. In the following, we
call positive membership assertions (PMAs) of the form A(a) or of the form P (a, b), whereas we
call negative membership assertions (NMAs) of the form ¬A(a),¬R(a, b). For simplicity, we use
the term “membership assertions” to refer to PMAs or NMAs. We will use the symbol “∗” to denote
all constants in the domain ∆. For example, assume a domain ∆ = {a, b, c}, then R(a, ∗) denotes
the set {R(a, a), R(a, b), R(a, c)}. For easy illustration, we also use the function ga [5] that takes
as input a basic role and two constants and returns a membership assertion, that is, if R = P , then
ga(R, a, b) = P (a, b); if R = P−, then ga(R, a, b) = P (b, a).

First, we need to extend some definitions in [5]. We start by defining the notion of applicable inclu-
sion or functionality. Then we give a definition of 4-chase(K) by extending the notion of chase [5] which
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is defined based on classical semantics. The four-valued canonical interpretation of a DL-Lite ontology
is a four-valued interpretation constructed according to 4-chase(K).

Definition 3 (Applicable Inclusion or Functionality). Let K = ⟨T ,A⟩ be a DL-Lite ontology. Sup-
pose S is a set of membership assertions. An inclusion assertion or a functionality assertion α ∈ T is
applicable in S to a membership assertion f ∈ S if
• α = A1 ⊑ A2, f = A1(a) and A2(a) /∈ S;
• α = A ⊑ ∃R, f = A(a) and there does not exist any constant b such that ga(R, a, b) ∈ S;
• α = ∃R ⊑ A, f = ga(R, a, b) and A(a) /∈ S;
• α = ∃R1⊑∃R2, f = ga(R1, a, b) and there does not exist any constant c such that ga(R2,a,c) ∈ S;
• α = R1 ⊑ R2, f = R1(a, b) and ga(R2, a, b) /∈ S;
• α = A1 ⊑ ¬A2, f = A1(a) and ¬A2(a) /∈ S;
• α = ∃R ⊑ ¬A, f = ga(R, a, b) and ¬A(a) /∈ S;
• α = R1 ⊑ ¬R2, f = ga(R1, a, b) and ¬ga(R2, a, b) /∈ S;
• α = A ⊑ ¬∃R, f = A(a) and there exists a constant b such that ¬ga(R, a, b) /∈ S;
• α = ∃R1 ⊑ ¬∃R2, f = ga(R1, a, b) and there exists a constant c such that ¬ga(R2, a, c) /∈ S;
• α = (funct R), f = ga(R, a, b) and there exists a constant x(x ̸= b) such that ga(R, a, x) ∈ S,
=(b, x) /∈ S .

Applicable inclusion or functionality can be used to construct 4-chase(K). Roughly speaking ,
4-chase(K) is a (possibly infinite) set of membership asserions, constructed step-by-step starting from
A. At each step of construction, an inclusion assertion or a functionality assertion α ∈ T is applied
to a membership assertion f ∈ S, which means adding a new suitable membership assertion to S , thus
obtaining a new set S ′

in which α is no longer applicable to f . For example, if α = A1 ⊑ ¬A2 is
applicable to f = A1(a), then the membership assertion to be added to S is ¬A2(a), that is, S ′

=
S ∪ ¬A2(a).

In fact, Definition 3 extends Definition 4 of [5] in which only PIs in TBox are involved and Definition
8 of [12] in which only NIs and functionality assertions logically implied by TBox are involved, yet
Definition 3 involves all axioms in TBox. Based on [5], we know that the construction process of
4-chase(K) strongly depends on the order in which we select the inclusion assertion or the functionality
assertion to be applied at each step and the membership assertion to which such an inclusion assertion
or a functionality assertion is applied, as well as on which constants we introduce at each step. Like
Calvanese et al. have discussed in [5], we denote with ΓA the set of all constant symbols occurring in
A and we assume that we have an infinite set ΓN of constant symbols not occurring in A, such that the
set ΓC = ΓA ∪ ΓN is totally ordered in lexicographic way. And we select all axioms in T , membership
assertions, constants symbols in lexicographic order. Then our notion of 4-chase(K) is precisely given
below.

Definition 4. Let K = ⟨T ,A⟩ be a DL-Lite ontology, let n be the number of membership assertions
in A, and let ΓN be the set of constants defined above. Assume that the membership assertions in A are
numbered from 1 to n following their lexicographic order, we have the definition as follows: S0 = A
and Sj+1 = Sj ∪ fnew, where fnew is a membership assertion numbered with n + j + 1 in Sj+1 and
obtained as follows: Let f be the first membership assertion in Sj such that there exists an axiom α ∈ T
applicable in Sj to f . Let α be the lexicographically first inclusion or functionality assertion applicable
in Sj to f . Let anew be the constant of ΓN that follows lexicographically all constants occurring in Sj .
Case α, f of
(cr1) α = A1 ⊑ A2 and f = A1(a) then fnew = A2(a)
(cr2) α = A ⊑ ∃R and f = A(a) then fnew = ga(R, a, anew)

6



Paraconsistent Query Answering Over DL-Lite Ontologies L. Zhou et al.

(cr3) α = ∃R ⊑ A and f = ga(R, a, b) then fnew = A(a)
(cr4) α = ∃R1 ⊑ ∃R2 and f = ga(R1, a, b) then fnew = ga(R2, a, anew)
(cr5) α = R1 ⊑ R2 and f = ga(R1, a, b) then fnew = ga(R2, a, b)
(cr6) α = A1 ⊑ ¬A2 and f = A1(a) then fnew = ¬A2(a)
(cr7) α = ∃R ⊑ ¬A and f = ga(R, a, b) then fnew = ¬A(a)
(cr8) α = R1 ⊑ ¬R2 and f = ga(R1, a, b) then fnew = ¬ga(R2, a, b)
(cr9) α = A ⊑ ¬∃R and f = A(a) then fnew = ¬ga(R, a, ∗)
(cr10) α = ∃R1 ⊑ ¬∃R2 and f = ga(R1, a, b) then fnew = ¬ga(R2, a, ∗)
(cr11) α = (funct R) and f = ga(R, a, b),∀x, ga(R, a, x) ∈ Sj and b ̸= x then fnew = (=(b, x)).
Then 4-chase(K) is the set of membership assertions obtained as the infinite union of all Sj , that is,
4-chase(K) =

∪
j∈N Sj .

Note that not only PIs but also NIs and functionality assertions in K have a role in constructing
4-chase(K). Furthermore, each inclusion or functionality assertion in T can be applied at most once to
a membership assertion (afterwards, the precondition is not satisfied and the inclusion or functionality
assertion is no longer applicable). In the following, we will denote with 4-chasei(K) the portion of the
chase obtained after i applications of the chase rules, selected according to the ordering established in
Definition 4, that is, 4-chasei(K) =

∪
j∈{0,...,i} Sj . We can easily obtain the following proposition which

is similar to Proposition 6 in [5].

Proposition 1. Let K = ⟨T ,A⟩ be a DL-Lite ontology, and let α be an inclusion assertion or a
functionality assertion in T . Then, if there is an i ∈ N such that α is applicable in 4-chasei(K) to a
membership assertion f ∈ 4-chasei(K), then there is a j ≥ i such that 4-chasej+1(K) = 4-chasej(K)∪
f

′
, where f

′
is the result of applying α to f in 4-chasej(K).

Proof. This proof is analogous to the proving process of Proposition 6 of [5]. Assume by contradiction
that there is no j > i such that 4-chasej+1(K) = 4-chasej(K)∪f ′

. Then we can deduce that either there
are infinitely many membership assertions that precede f in the ordering that we choose for membership
assertions in 4-chase(K), or that there are infinitely many chase rules applied to some membership
assertions that precede f . However, none of these cases is possible. Indeed, f is assigned with an
ordering numberm such that exactlym−1 membership assertions precede f . Furthermore, an inclusion
assertion or a functionality assertion can be applied at most once to a membership assertion, and also
there exists only a finite number l of inclusion assertions and functionality assertions. Therefore, it is
possible to apply a chase rule to some membership assertion at most l times. We can thus conclude that
the claim holds.

Now, with the notion of 4-chase(K), we define the four-valued canonical interpretation denoted as
4-can(K) = ⟨∆4-can(K), .4-can(K)⟩, where

• ∆4-can(K) = ΓC ,

• a4-can(K) = a, for each constant a occurring in 4-chase(K)

• A4-can(K) = ⟨{a | A(a) ∈ 4-chase(K)}, {b | ¬A(b) ∈ 4-chase(K)}⟩, for each atomic concept A,

• P 4-can(K) = ⟨{(a1, a2) | P (a1, a2) ∈ 4-chase(K)}, {(b1, b2) | ¬P (b1, b2) ∈ 4-chase(K)}⟩, for
each atomic role P

• =4-can(K)= ⟨{(a1, a2) |=(a1, a2) ∈ 4-chase(K)} ∪ {(a, a) | ∀a ∈ ΓC}, {(b1, b2) | ∀b1, b2 ∈ ΓC

and b1 ̸= b2}⟩.
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Like can(K) in [5], we also define 4-cani(K) = ⟨∆4-can(K), .4-cani(K)⟩, where .4-cani(K) is analo-
gous to .4-can(K) but it refers to 4-chasei(K) instead of 4-chase(K). 4-chase(K) and 4-can(K) (resp.,
4-chasei(K) and 4-cani(K)) are strongly connected. It is easy to see that 4-can(K) (resp., 4-cani(K)) is
also unique.

Now we give a four-valued interpretation 4-db(A) = ⟨∆4-db(A), .4-db(A)⟩, where

• ∆4-db(A) = ∆db(A) ,

• a4-db(A) = a, for each constant a occurring in A

• A4-db(A) = ⟨{a | A(a) ∈ A}, {∅}⟩, for each atomic concept A,

• P 4-db(A) = ⟨{(a1, a2) | P (a1, a2) ∈ A}, {∅}⟩, for each atomic role P

• =4-db(A)= ⟨{(a, a) | ∀a ∈ ∆4-db(A)}, {(b1, b2) | ∀b1, b2 ∈ ∆4-db(A) and b1 ̸= b2}⟩.

Note that 4-can0(K) is tightly related to the interpretation 4-db(A), that is, .4-db(A) = .4-can0(K).
The following theorem shows a notable property of 4-can(K).

Theorem 2. Let K = ⟨T ,A⟩ be a DL-Lite ontology. Then 4-can(K) is a four-valued model of
⟨T ,A⟩.

Proof. First 4-can(K) satisfies all membership assertions in A because A ⊆ 4-chase(K). So we only
need to prove that 4-can(K) |= T . Let us proceed by contradiction considering all possible cases.

Suppose by contradiction that an inclusion assertion of the form A1 ⊑ A2 ∈ T , where A1 and
A2 are atomic concepts, is not satisfied by 4-can(K). Then there exists a constant a ∈ ΓC such that
A1(a) ∈ 4-chase(K) and A2(a) /∈ 4-chase(K). However, such a situation would trigger the chase rule
cr1, since A1 ⊑ A2 would be applicable to A1(a) in 4-chase(K) and Proposition 1 ensures that such
an inclusion assertion would be applied at some step in the construction of the chase, thus causing the
insertion of A2(a) in 4-chase(K), hence contradicting the assumption. For the inclusion assertions such
that ∃R ⊑ A can be proved in an analogous way.

Now suppose by contradiction that an inclusion assertion of the form A ⊑ ∃R ∈ T , where A
and R are atomic concept and role respectively, is not satisfied by 4-can(K). Then there exists a con-
stant a ∈ ΓC such that A(a) ∈ 4-chase(K) and there does not exist a constant c ∈ ΓC such that
ga(R, a, c) ∈ 4-chase(K). However, such a situation would trigger the chase rule cr2, since A ⊑ ∃R
would be applicable to A(a) in 4-chase(K) and Proposition 1 ensures that such an inclusion assertion
would be applied at some step in the construction of the chase, thus causing the insertion of ga(R, a, c)
in 4-chase(K), where c ∈ ΓC follows lexicographically all constants occurring in 4-chase(K) before the
execution of cr2, hence contradicting the assumption. For the inclusion assertions such that ∃R1 ⊑ ∃R2

can be proved in an analogous way.
Now we assume by contradiction that an inclusion assertion of the form R1 ⊑ R2 ∈ T , where R1

and R2 are atomic roles, is not satisfied by 4-can(K). Then there exists a pair of constants a, b ∈ ΓC

such that ga(R1, a, b) ∈ 4-chase(K) and ga(R2, a, b) /∈ 4-chase(K). However, such a situation would
trigger the rule cr5, since R1 ⊑ R2 would be applicable to ga(R1, a, b) in 4-chase(K) and Proposition 1
ensures that such an inclusion assertion would be applied at some step in the construction of the chase,
thus causing the adding of ga(R2, a, b) in 4-chase(K) at some step, hence contradicting the assumption.

Next we assume by contradiction that an inclusion assertion of the form A1 ⊑ ¬A2 ∈ T , where
A1 and A2 are atomic concepts, is not satisfied by 4-can(K). Then there exists a constant a ∈ ΓC such
that A1(a) ∈ 4-chase(K) and ¬A2(a) /∈ 4-chase(K). However, such a situation would trigger the rule
cr6, since A1 ⊑ ¬A2 would be applicable to A1(a) in 4-chase(K) and Proposition 1 ensures that such
an inclusion assertion would be applied at some step in the construction of the chase, thus causing the
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adding of ¬A2(a) in 4-chase(K) at some step, hence contradicting the assumption. For the inclusion
assertions such that ∃R ⊑ ¬A can be proved in an analogous way.

Now we assume by contradiction that an inclusion assertion of the form ∃R1 ⊑ ¬∃R2 ∈ T , where
R1 and R2 are atomic role, is not satisfied by 4-can(K). Then there exists a pair of constants a, b ∈ ΓC

such that ga(R1, a, b) ∈ 4-chase(K) and there exist a constant c ∈ ΓC such that ¬ga(R2, a, c) /∈
4-chase(K). However, such a situation would trigger the rule cr10, since ∃R1 ⊑ ¬∃R2 would be
applicable to ga(R1, a, b) in 4-chase(K) and Proposition 1 ensures that such an inclusion assertion would
be applied at some step in the construction of the chase, thus causing the adding of ¬ga(R2, a, ∗) in
4-chase(K) at some step, hence contradicting the assumption. For the inclusion assertions such that
A ⊑ ¬∃R can be proved in an analogous way.

Now we assume by contradiction that an inclusion assertion of the form R1 ⊑ ¬R2 ∈ T , where R1

and R2 are atomic roles, is not satisfied by 4-can(K). Then there exists a pair of constants a, b ∈ ΓC

such that ga(R1, a, b) ∈ 4-chase(K) and ¬ga(R2, a, b) /∈ 4-chase(K). However, such a situation would
trigger the rule cr8, since R1 ⊑ ¬R2 would be applicable to ga(R1, a, b) in 4-chase(K) and Proposition
1 ensures that such an inclusion assertion would be applied at some step in the construction of the chase,
thus causing the adding of¬ga(R2, a, b) in 4-chase(K) at some step, hence contradicting the assumption.

Finally, assume by contradiction that a functionality assertion of the form (funct R), where R is a
basic role, is not satisfied by 4-can(K). Then there exists constants a, b, c ∈ ΓC such that ga(R, a, b),
ga(R, a, c) ∈ 4-chase(K) and =(b, c) /∈ 4-chase(K). However, such a situation would trigger the rule
cr11, since (funct R) would be applicable to ga(R, a, b) or ga(R, a, c) in 4-chase(K) and Proposition 1
ensures that such a functionality assertion would be applied at some step in the construction of the chase,
thus causing the adding of =(b, c) in 4-chase(K) at some step, hence contradicting the assumption.

Theorem 2 tells us that for any DL-Lite ontology, we can always construct a four-valued model. In
the following, we will use 4-can(K) for paraconsistent query answering over DL-Lite ontologies.

4.2 Query answering

In this section, we consider paraconsistent query answering over DL-Lite ontologies. We first give some
properties which hold for 4-can(K). Then we show that paraconsistent query answering for UCQs over
DL-Lite ontologies can be reduced to evaluate a finite reformulation of the query over 4-db(A).

Lemma 1. Let K = ⟨T ,A⟩ be a DL-Lite ontology, and letM = ⟨∆M, .M⟩ be a four-valued model
for K. Then, there is a function ψ from ∆M to ∆4-can(K) such that

(1) For each atomic concept A in K and each object o ∈ ∆4-can(K), if o ∈ proj+(A4-can(K)), then
ψ(o) ∈ proj+(AM) and
(2) For each atomic role P inK and each pair of objects o, o

′ ∈ ∆4-can(K), if (o, o
′
) ∈ proj+(P 4-can(K)),

then (ψ(o), ψ(o
′
)) ∈ proj+(PM).

Proof. In order to define the functionψ, we start with the construction of 4-chase(K), and simultaneously
show that properties (1) and (2) hold.

Base Step. For each constant d occurring inA, we set ψ(d4-can(K)) = dM (notice that each modelM
interprets each such constant with an element in ∆M). We remember that chase0(K) = A, ∆can0(K) =
∆4-can(K) = ΓC , and that, for each constant d occurring inA, dcan0(K) = d. Then, it is easy to see that for
each object oc ∈ ∆can0(K) (resp., for each pair of objects o1c , o

2
c ∈ ∆can0(K)), if oc ∈ proj+(Acan0(K)),

where A is an atomic concept in K (resp., o1c , o
2
c ∈ proj+(P can0(K)), where P is an atomic role in K),

we have that A(oc) ∈ chase0(K) (resp., P (o1c , o
2
c) ∈ chase0(K)). Since M satisfies all membership

assertions in A, we also have that ψ(oc) ∈ proj+(AM) (resp., (ψ(o1c), ψ(o2c)) ∈ proj+(PM)).

9



Paraconsistent Query Answering Over DL-Lite Ontologies L. Zhou et al.

Inductive Step. Based on the construction of 4-chase(K) and 4-can(K), we know that for each
atomic concept A (resp., each atomic role P ), proj+(A4-can(K)) (resp., proj+(R4-can(K))) only relate
with PMAs in 4-chase(K). And that, PMAs in 4-chase(K) only includesA and other PMAs obtained by
applying rule cr1-cr5, whereas PMAs can not be obtained by applying other rule cr6-cr11. Now let us
assume that chasei+1(K) is obtained from chasei(K) by applying rule cr2. This means that an inclusion
assertion of the formA ⊑ ∃R, whereA is an atomic concept in T , andR is a basic role in T , is applied in
chasei(K) to a membership assertion of the form A(d), such that there does not exist a constant f ∈ ΓC

such that ga(R, d, f) ∈ chasei(K). Therefore chasei+1(K) = chasei(K) ∪ {ga(R, d, e)}, where e
follows lexicographically all constants appearing in chasei(K). By the induction hypothesis, there exists
om ∈ ∆M such that ψ(d) = om and om ∈ proj+(AM). BecauseM is a four-valued model of K, soM
satisfiesA ⊑ ∃R, that is, there is at least one object o

′
m ∈ ∆M such that (om, o

′
m) ∈ proj+(RM). Then,

we set ψ(e) = o
′
m, and we can conclude that (ψ(d), ψ(e)) ∈ proj+(RM). With an analogous argument

we can prove the inductive step also in those cases in which chasei+1(K) is obtained from chasei(K) by
applying one of the rules cr1, cr3, cr4 or cr5.

From Lemma 1 we know that, for every four-valued model M of K = ⟨T ,A⟩, there is a homo-
morphism from 4-can(K) to M that maps the objects which support concepts and roles to be true in
4-can(K) to objects which support concepts and roles to be true in M. We know that for a union of
conjunctive queries q over an onotology K = ⟨T ,A⟩, a certain answer to q in K is only related with the
constants which support concepts and roles to be true in every four-valued model of K. So we have the
following theorem.

Theorem 3. Let K = ⟨T ,A⟩ be a DL-Lite ontology, and let Q be a union of conjunctive queries
over K. Then 4-Ans(q,K) = Q4-can(K), where Q4-can(K) is similar as qI defined in Definition 2.

Proof. First we know that ∆4-can(K) = ΓC and that, for each constant d occurring in K, d4-can(K) = d.
Therefore, given a tuple t⃗ of constants occurring in A, we have that t⃗4-can(K) = t⃗. So we can hence
rephrase the claim as t⃗ ∈ 4-Ans(q,K) iff t⃗ ∈ Q4-can(K).

“⇒” Suppose t⃗ ∈ 4-Ans(q,K). Then, since 4-can(K) is a model of K, we have that t⃗ ∈ Q4-can(K).
“⇐” Suppose t⃗ ∈ Q4-can(K). Let Q be the union of conjunctive queries Q = {q1, · · · , qk} with qi

defined as qi(x⃗) ← conji(x⃗, y⃗i) for each i ∈ {1, · · · , k}. Then there exists i ∈ {1, · · · , k} such that
there is a homomorphism from conji(⃗t, y⃗i) to 4-can(K); that is, there exists an assignment µ : V →
∆4-can(K) that maps the variables V occurring in conji(⃗t, y⃗i) to objects of ∆4-can(K), such that all atoms
in conji(⃗t, y⃗i) under the assignment µ evaluate to t or B in 4-can(K).

Now let M be a model for K. By Lemma 1, there is a homomorphism ψ from ∆4-can(K) to ∆M.
Consequently, the function obtained by composing ψ and µ is a function that maps the variables V
occurring in conji(⃗t, y⃗i) to objects of ∆M, such that all atoms in conji(⃗t, y⃗i) under the assignment µ
evaluate to t or B inM. Therefore, t⃗M ∈ QM, which implies that t⃗ ∈ 4-Ans(Q,K).

Theorem 3 tells us that for any union of conjunctive queries Q, the answers to Q over K correspond
to the evaluation of Q in 4-can(K).

Theorem 4. Let K = ⟨T ,A⟩ be a DL-Lite ontology, and let Q be a union of conjunctive queries
over K. Then 4-Ans(Q,K) =

∪
qi∈Q 4-Ans(qi,K).

Proof. Suppose t⃗ ∈ 4-Ans(Q,K), and suppose that every qi is of the form qi(x⃗)← conji(x⃗, y⃗i) for each
qi ∈ Q. Then by Theorem 3, t⃗4-can(K) ∈ Q4-can(K), which implies that there exists i ∈ {1, · · · , k} such
that t⃗4-can(K) ∈ conji(⃗t, y⃗i)4-can(K). Hence, from Theorem 3, it follows that t⃗ ∈ 4-Ans(qi,K).
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Theorem 4 states that the set of answers to a union of conjunctive queries Q in K corresponds to
the union of the answers to the various conjunctive queries in Q. We now extend the results in [5]
by considering generic DL-Lite ontologies (either satisfiable or unsatisfiable), and provide the following
theorem which shows that query answering for UCQs over DL-Lite ontologies can be reduced to evaluate
a finite reformulation of the query over 4-db(A).

Theorem 5. LetK = ⟨T ,A⟩ be an inconsistent DL-Lite ontology, q a conjunctive query overK, and
let PR be a union of conjunctive queries returned by PerfectRef(q, T ). Then 4-Ans(q,K) = PR4-db(A),
where PR4-db(A) is similar as qI defined in Definition 2.

Proof. The proof is a consequence of Lemma 39 in [5] by extending the classical semantics to four-
valued semantics.

Based on Theorem 5, we have Algorithm Answer(Q,K) as follows:
Input: a DL-Lite ontology K = ⟨T ,A⟩, an UCQ Q;
Output: 4-Ans(Q,K);
Return: (

∪
qi∈Q PerfectRef(qi, T ))4-db(A).

In fact, Algorithm Answer(Q,K) first computes the perfect reformulation PR of Q by rewriting
rule PerfectRef, then returns PR4-db(A) directly. The following theorem shows the correctness of the
algorithm.

Theorem 6. Let K = ⟨T ,A⟩ be a DL-Lite ontology, and Q be a union of conjunctive queries, and t⃗
a tuple of constants in K. We have: (1) the algorithm Answer(Q,K) terminates; (2) t⃗ ∈ 4-Ans(Q,K) if
and only if t⃗ ∈ Answer(Q,K)

Proof. It is immediately to obtain (1) because Answer(Q,K) mainly depends on the algorithm Perfec-
tRef(q, T ) which is terminates [5]. Through Theorem 4 and Theorem 5 we can easily obtain (2).

Example 4 (Example 2 contd.). Let us consider a query q(x) = Stud(x) ∧ ∃y.hasTutor(x, y). By
executingAnswer(q,K), it first execute algorithm PerfectRef(q, T ) which return the union of the follow-
ing conjunctive queries: {Stud(x)∧∃y.hasTutor(x, y), PhDStud(x)∧∃y.hasTutor(x, y), PhDStud(x)∧
Stud(x), PhDStud(x)},then based on the interpretation 4-db(A), we obtain that 4-Ans(q,K) is {a}.

The following theorem shows the complexity of paraconsistent query answering over DL-Lite on-
tologies:

Theorem 7. Paraconsistent answering unions of conjunctive queries in DL-Lite K = ⟨T ,A⟩ is
PTime in the size of the TBox, and LOGSPACE in the size of the ABox.

Proof. First the algorithm PerfectRef(q, T ) runs in time polynomial in the size of T [5]. Because unions
of conjunctive queries are a subclass of FOL queries [5], and also the evaluation of a union of conjunctive
queries over a database can be computed in LogSpace with respect to the size of the database. So the
claim holds.

5 Conclusion and Future work

Paraconsistent query answering over ontologies is an important problem in ontology engineering. In
this paper, we considered the problem of answering unions of conjunctive queries posed to inconsistent
DL-Lite ontologies. We first gave a four-valued semantics for DL-Lite. Then through introducing the
definition of 4-chase(K), we gave a four-valued canonical interpretation 4-can(K) for any inconsistent
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DL-Lite ontology K and we proved this interpretation was also a four-valued model of K. Then we pre-
sented a theorem, that is, for any union of conjunctive queries Q, the answers to Q over an inconsistent
DL-Lite ontology K correspond to the evaluation of Q over 4-can(K). Furthermore, based on the prop-
erties of 4-can(K) and 4-db(A), we proved that query answering for UCQs over inconsistent DL-Lite
ontologies can be reduced to evaluate a finite reformulation of the query over 4-db(A) which is also our
motivation to propose a tractable algorithm to compute the certain answers to a query over an inconsis-
tent DL-Lite ontology. Our algorithm first computes the perfect reformulation PR of Q by rewriting rule
PerfectRef [5], then returns PR4-db(A) directly. As a future work, we will implement our algorithm and
provide experimental results and we also plan to do the work of paraconsistent query answering over
DL-LiteR,⊓ and DL-LiteF ,⊓.
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