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Executive Summary

In this document, we discuss the main features of Web scale reasoning and develop a
framework of interleaving reasoning and selection. We examine the framework of inter-
leaving reasoning and selection with the LarKC platform. The framework is explored
further from the following three perspectives: i) Query-based selection. We propose
various query-based strategies of interleaving selection and reasoning with respect to
the LarKC data sets; ii) Granularity-based selection. We investigate the Web scale
reasoning from the perspective of granular reasoning, and develop several strategies
of Web scale reasoning with granularity; and iii) Language-based selection. We pro-
pose an approach of classification with anythime behaviours based on approximate
reasoning and report the results of the experiments with several realistic ontologies.
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Höchstleistungsrechenzentrum,
Universitaet Stuttgart
Stuttgart, Germany
Email : gallizo@hlrs.de

MAX-PLANCK GESELLSCHAFT ZUR
FOERDERUNG DER WISSENSCHAFTEN
E.V.

Dr. Lael Schooler,
Max-Planck-Institut für Bildungsforschung
Berlin, Germany
Email: schooler@mpib-berlin.mpg.de

Ontotext AD Atanas Kiryakov,
Ontotext Lab,
Sofia, Bulgaria
Email: naso@ontotext.com

SALTLUX INC. Kono Kim
SALTLUX INC
Seoul, Korea
Email: kono@saltlux.com

SIEMENS AKTIENGESELLSCHAFT Dr. Volker Tresp
SIEMENS AKTIENGESELLSCHAFT
Muenchen, Germany
Email: volker.tresp@siemens.com

THE UNIVERSITY OF SHEFFIELD Prof. Dr. Hamish Cunningham,
THE UNIVERSITY OF SHEFFIELD
Sheffield, UK
Email: h.cunningham@dcs.shef.ac.uk

VRIJE UNIVERSITEIT AMSTERDAM Prof. Dr. Frank van Harmelen,
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, Netherlands
Email: Frank.van.Harmelen@cs.vu.nl

THE INTERNATIONAL WIC INSTI-
TUTE, BEIJING UNIVERSITY OF
TECHNOLOGY

Prof. Dr. Ning Zhong,
THE INTERNATIONAL WIC INSTITUTE
Mabeshi, Japan
Email: zhong@maebashi-it.ac.jp

INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER

Dr. Paul Brennan,
INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER
Lyon, France
Email: brennan@iarc.fr

INFORMATION RETRIEVAL FACILITY Dr. John Tait, Dr. Paul Brennan,
INFORMATION RETRIEVAL FACILITY
Vienna, Austria
Email: john.tait@ir-facility.org

4 of 64



FP7 – 215535

Deliverable 4.3.1

Table of Contents

List of figures 7

List of Acronyms 8

1 Introduction 9

2 A Framework of Interleaving Reasoning and Selection 11
2.1 Web Scale Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Framework of Web Scale Reasoning by Interleaving Reasoning and Se-

lection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Query-based Selection Strategies 13
3.1 Selection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Relevance based Selection Functions . . . . . . . . . . . . . . . . . . . . 15

4 Interleaving Reasoning and Selection in the LarKC Platform 17
4.1 LarKC Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 LarKC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 LarKC Plug-ins . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.3 LarKC Selection Plug-ins . . . . . . . . . . . . . . . . . . . . . . 18
4.1.4 LarKC Reasoning Plug-ins . . . . . . . . . . . . . . . . . . . . . 19
4.1.5 LarKC Decider Plug-ins . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Interleaving Reasoning and Selection . . . . . . . . . . . . . . . . . . . 20
4.3 Syntactic Relevance based Selection Functions . . . . . . . . . . . . . . 21
4.4 Semantic Relevance based Selection Functions . . . . . . . . . . . . . . 21
4.5 Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5.1 Variant Strategies of Interleaving Reasoning and Selection . . . 24
4.5.2 Strategies for Over-determined Processing . . . . . . . . . . . . 25

5 Unifying Search and Reasoning from the Viewpoint of Granular-
ity 26
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 Granule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.4 Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Searching and Reasoning on a Knowledge Graph . . . . . . . . . . . . . 29
5.4 Starting Point Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Multilevel Completeness Strategy . . . . . . . . . . . . . . . . . . . . . 31
5.6 Multilevel Specificity Strategy . . . . . . . . . . . . . . . . . . . . . . . 32
5.7 Multiperspective Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.8 A Case Study on the Semantic Dataset . . . . . . . . . . . . . . . . . . 33

5.8.1 Multilevel Completeness Strategy . . . . . . . . . . . . . . . . . 33
5.8.2 Starting Point Strategy . . . . . . . . . . . . . . . . . . . . . . . 34
5.8.3 Multilevel Specificity Strategy . . . . . . . . . . . . . . . . . . . 34

5 of 64



FP7 – 215535

Deliverable 4.3.1

5.8.4 Multiperspective Strategy . . . . . . . . . . . . . . . . . . . . . 36
5.9 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.10 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Anytime Classification by Ontology Approximation 42
6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2 A SOUND APPROXIMATION FOR CLASSIFICATION . . . . . . . . 43
6.3 EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3.1 Approximation Strategies . . . . . . . . . . . . . . . . . . . . . 46
6.3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.3 Performance Measure . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . 49
6.5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7 Conclusion 60

References 60

6 of 64



FP7 – 215535

Deliverable 4.3.1

List of Figures

3.1 Linear Extension Strategy. . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 The LarKC Platform Architecture . . . . . . . . . . . . . . . . . . . . . 17

5.1 Comparison of predicted and actual completeness value. . . . . . . . . . 34
5.2 Normalized edge degree distribution in the SwetoDBLP RDF dataset. . 37
5.3 Coauthor number distribution in the SwetoDBLP dataset. . . . . . . . 38
5.4 log-log diagram of Figure 5.3. . . . . . . . . . . . . . . . . . . . . . . . 38
5.5 A zoomed in version of Figure 5.3. . . . . . . . . . . . . . . . . . . . . 38
5.6 A zoomed in version of coauthor distribution for “Artificial Intelligence”. 38
5.7 Publication number distribution in the SwetoDBLP dataset. . . . . . . 38
5.8 log-log diagram of Figure 5.7. . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 anytime performance profile from examples 1 and 2 . . . . . . . . . . . 45
6.2 Some properties of the ontologies used in our experiments . . . . . . . . 47
6.3 Results for the MORE strategy on the DICE ontology . . . . . . . . . . 48
6.4 Summary of success and failure of the different strategies. . . . . . . . . 50
6.5 Interruptible behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 of 64



FP7 – 215535

Deliverable 4.3.1

List of Acronyms

Acronym Description

DL Description Logics
OWL Web Ontology Language
PION The System of Processing Inconsistent Ontologies
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SPARQL SPARQL Protocol And RDF Query Language

8 of 64



FP7 – 215535

Deliverable 4.3.1

1. Introduction

Web scale reasoning has become a crucial issue for practical applications of the Seman-
tic Web, because of the extremely large scale data on the Web. Web scale semantic
data have the following main features:

• Infiniteness. There are extremely large amount of semantic data on the Web.
Till June 2009, Linked Data have reached the scale of above four billion triples.
More linked data are expected to grow rapidly in coming few years. Therefore,
Web scale data can be considered to be infinitely scalable.

• Dynamics. Web scale data are in flux. They are growing extremely rapidly, so
that it is hard to know what the clear border of data is.

• Inconsistency. Re-using and combining multiple ontologies on the Web is
bound to lead to inconsistencies between the combined vocabularies. Even many
of the ontologies that are in use today turn out to be inconsistent once some of
their implicit knowledge is made explicit. Therefore, infinitely scaled Web data
tend to be semantically inconsistent. Moreover, consistency checking of Web
scale data is impossible because of the infinite scale.

Because of those features of Web scale data, many traditional notions of reasoning are
not valid any more. Essence of the LarKC project is to go beyond tranditional notions
of absolute correctness and completeness in reasoning. We are looking for retrieval
methods that provide useful responses at a feasible cost of information acquisition and
processing. Therefore, generic inference methods need to be extended to non-standard
approaches.

In this document, we will explore an approach of Web scale reasoning, in which
various strategies of interleaving reasoning and selection are developed, so that the
reasoning processing can focus on limited part of data to improve the scalability of
Web scale reasoning. This approach is inspired by our previous work on reasoning
with inconsistent ontologies[19]. However, in this document we will develop a general
framework of interleaving reasoning and selection, so that it can deal with not only
reasoning with inconsistent ontologies, but also generic Web scale data.

Collins and Quillian observe that knowledge is stored as a system of propositions
organized hierarchically in memory [11], in problem solving, human can focus on ap-
propriate levels to avoid redundant information. Minsky remarks that in order to avoid
the failure of understanding knowledge in one way, knowledge should be represented
from different viewpoints [28]. As an emerging field of study, Granular Computing
extracts the commonality of human and machine intelligence and emphasizes on mul-
tilevel and Multiperspective organization of granular structures [47].

In this document, we will develop various strategies under the notion of granu-
lar reasoning to solve the problems for Web scale reasoning. Inspired by Cognitive
Science, Artificial Intelligence and Granular Computing, we bring the strategies of
multilevel, multiperspective, starting point to Web scale reasoning. With user in-
volvement, switching among different levels and perspectives during the process of
reasoning is the basic philosophy of granular reasoning. From the multilevel point of
view, in order to meet different levels of user needs, we can provide reasoning results
with variable completeness and variable specificity. From the multiperspective point
of view, reasoning can be based on different perspectives of the knowledge source.
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Reasoning based on starting point utilizes the user background and provides most
important reasoning results to users. These strategies is aimed at satisfying a wide
variety of user needs and removing the scalability barriers.

Anytime algorithms are attractive for Web scale reasoning, because they allow
a trade-off between the cost of the algorithm and the quality of the results. Such
anytime algorithms have been developed for many AI reasoning tasks, such as plan-
ning, diagnosis and search. However, until now no anytime methods exist yet for
subsumption-based classification in Description Logics. This is important among the
other problems because classification is essential to Semantic Web applications, which
require reasoning over large or complex ontologies.

In this document, we will present an algorithm for classification with anytime
behaviour based on approximate subsumption. We give formal definitions for approx-
imate subsumption, and show soundness and monotonicity. We develop an algorithm
and heuristics to obtain anytime behaviour for classification reasoning. This anytime
behaviour can be realised with classical DL reasoners. We study the computational
behaviour of the algorithm on a set of realistic ontologies. Our experiments show
attractive performance profiles. The most interesting finding is that anytime classifi-
cation works best where it is most needed: on ontologies where classical subsumption
is hardest to compute.

This document is organized as follows: In Chapter 2 we discuss the main features of
Web scale reasoning and develop a framework of interleaving reasoning and selection.
In Chapter 3 we explore the framework from the perspective of query-based selection.
In Chapter 4 we examine the framework of interleaving reasoning and query-based
selection with the LarKC platform and propose several strategies of interleaving selec-
tion and reasoning with respect to the LarKC data sets. In Chapter 5 we investigate
the Web scale reasoning from the perspective of granular reasoning, and develop sev-
eral strategies of Web scale reasoning with granularity. In Chapter 6 we propose an
approach of classification with anythime behaviours based on approximate reasoning
and report the results of the experiments with several realistic ontologies. In Chapter
7 we discuss the future work and conclude the document.
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2. A Framework of Interleaving Reasoning and Selection

2.1 Web Scale Reasoning

Web scale reasoning is reasoning with Web scale semantic data. As we discussed before,
The main features of Web scale semantic data are: i)Infiniteness. There are extremely
large amount of semantic data on the Web. They can be considered to be infinitely
scalable. ii) Dynamics. Web data are in flux. There is no a clear border of data,
and iii) Inconsistency. It is most likely that so large amount of data are semantically
inconsistent. However, consistency checking of Web scale data is impossible.

Those features of Web scale data force us to re-examine the traditional notion of
reasoning. The classical notion of reasoning is to consider the consequence relation
between a knowledge base (i.e. a formula set Σ) and a conclusion (i.e., a formula φ),
which is defined as follows:

Σ |= φ iff for any model M of Σ, M is a model of φ.

For Web scale reasoning, Knowledge base Σ can be considered as an infinite formula
set. However, when the cardinality |Σ| of the knowledge base Σ becomes infinite and Σ
is inconsistent, many notions of logic and reasoning in classical logics, including many
existing description logics, which are considered to be standard logics for ontology
reasoning and the Semantic web, are not valid any more.

It is worthy to mention that classical logics do not limit the cardinality of their
knowledge bases to be finite, because the compactness theorem in classical logics would
help them to deal with the infiniteness.

The Compactness theorem states that:

(CT) a (possibly infinite) set of first-order formulas has a model, iff every finite subset
of it has a model,

Or conversely:

(CT’) a (possibly infinite) set of formulas doesn’t have a model if there exists its
finite subset that doesn’t have a model.

That means that given an infinite set of formulas Σ and a formula φ, if we can
find a finite subset Σ′ ⊆ Σ such that Σ′ ∪ {¬φ} is unsatisfiable (namely, there exists
no model to make the formula set holds), it is sufficiently to conclude that φ is a
conclusion of the infinite Σ. In other words, the compactness theorem means that
in the formalisms based on FOL we can positively answer the problems of the form
Σ |= φ, by showing that Σ ∪ {¬φ} |= contradiction. Thus, we have chances to show
(even if Σ is infinite) if we are able to identify a finite subset of Σ (call it Σ′ ) such
that Σ′ ∪ {¬φ} |= contradiction.

However, we would like to point out that the compactness theorem would not help
for Web scale reasoning because of the following reason.

For Web scale data, Knowledge base Σ may be inconsistent. Now, consider the
problem to answer the form Σ |= φ where Σ is inconsistent. When Σ is inconsistent,
a finite subset of Σ (call it Σ′) such that Σ′ ∪ {¬φ} |= contradiction would not be
sufficient to lead to a conclusion that Σ |= φ, because there might exist another subset
of Σ (call it Σ′′) such that Σ′′ ∪ {φ} |= contradiction.
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If we re-examine the classical notions of the complexity in the setting of Web scale
reasoning, many those of the notions would also become meaningless. Just take the
example of the complexity of finding the answer problems of the form Σ |= φ. Consider
a polynomial complexity with respect to the complexity of knowledge base Σ, say, a
linear complexity O(|Σ|). When Σ becomes infinite, a linear complexity would become
intractable.

2.2 Framework of Web Scale Reasoning by Interleaving Reason-
ing and Selection

A way out to solve the infiniteness and inconsistency problems of Web scale reasoning
is to introduce a selection procedure so that our reasoning processing can focus on a
limited (but meaningful) part of the infinite data. That is the motivation for developing
the framework of Web scale reasoning by interleaving reasoning and selection.

Therefore, the proceddure of Web scale reasoning by interleaving reasoning and
selection consists of the following selection-reasoning-decicison-loop:

Algorithm 2.1: Selection-Reasoning-Loop

repeat
Selection: Select a (consistent) subset Σ′ ⊆ Σ
Reasoning: Reasoning with Σ′ |= φ to get answers
Decision: Deciding whether or not to stop the processing

until Answers are returned.
Namely, the framework depends on the following crucial processes: i) How can

we select a subset of a knowledge base and check the consistency of selected data, ii)
How can we reason with selected data, iii) how can we make the decision whether or
not the processing should be stop. That usually depends on the problem how we can
evaluate the answer obtained from the process ii), Our framework is inspired by our
previous work in reasoning with inconsistent ontologies[19]. Since Web scale data may
be inconsistent, we can apply the same framework to deal with the problem of Web
scale reasoning.

In the following, we will explore the framework further from the following three
perspectives: i) Query-based selection. We propose various query-based strategies of
interleaving selection and reasoning; ii) Granularity-based selection. We investigate
the Web scale reasoning from the perspective of granular reasoning, and develop several
selection strategies of Web scale reasoning with granularity; and iii) Language-based
selection. We propose an approach of classification with anythime behaviours based on
sub-language selection and report the results of the experiments with several realistic
ontologies.
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3. Query-based Selection Strategies

3.1 Selection Functions

Selection functions play the main role in the framework of interleaving reasoning and
query-based selection. A system of interleaving reasoning and query-based selection
uses a selection function to determine which subsets of a knowledge base should be
considered in its reasoning process. This general framework is independent of the
particular choice of selection function. The selection function can either be based on a
syntactic approach, like Chopra, Parikh, and Wassermann’s syntactic relevance [8] and
those in PION[19], or based on semantic relevance like for example in computational
linguistics as in Wordnet [7] or based on semantic relevance which is measure by the
co-occurrence of concepts in search engines like Google[22].

In our framework, selection functions are designed to query-specific, which is differ-
ent from the traditional approach in belief revision and nonmonotoic reasoning, which
assumes that there exists a general preference ordering on formulas for selection. Given
a knowledge base Σ and a query φ, a selection function s is one which returns a sub-
set of Σ at the step k > 0. Let L be the ontology language, which is denoted as a
formula set. A selection function s is a mapping s : P(L)× L×N → P(L) such that
s(Σ, φ, k) ⊆ Σ.

A selection function s is called monotonic if the subsets it selects monotonically
increase or decrease, i.e., s(Σ, φ, k) ⊆ s(Σ, φ, k + 1), or vice versa. For monotonically
increasing selection functions, the initial set is either an emptyset, i.e., s(Σ, φ, 0) = ∅,
or a fixed set Σ0. For monotonically decreasing selection functions, usually the initial
set s(Σ, φ, 0) = Σ. The decreasing selection functions will reduce some formulas from
the inconsistent set step by step until they find a maximally consistent set.

Traditional reasoning methods cannot be used to handle knowledge bases with
large scale. Hence, selecting and reasoning on subsets of Σ may be appropriate as an
approximation approach with monotonically increasing selection functions. Web scale
reasoning on a knowledge base Σ can use different selection strategies to achieve this
goal. Generally, they all follow an iterative procedure which consists of the following
processing loop, based on the selection-reasoning-decision loop discussed above:
i) select part of the knowledge base, i.e., find a subset Σ′

i of Σ where i is a positve
integer, i.e., i ∈ I+;
ii) apply the standard reasoning to check if Σ′

i |= φ;
iii) decide whether or not to stop the reasoning procedure or continue the reasoning
with gradually increased selected subgraph of the knowledge graph (Hence, Σ′

1 ⊆ Σ′
2 ⊆

... ⊆ Σ).
Monotonically increasing selection functions have the advantage that they do not

have to return all subsets for consideration at the same time. If a query can be
answered after considering some consistent subset of the knowledge graph KG for
some value of k, then other subsets (for higher values of k) don’t have to be considered
any more, because they will not change the answer of the reasoner. In the following,
we use Σ |= φ to denote that φ is a consequence of Σ in the standard reasoning1, and
use Σ |≈ φ to denote that φ is a consequence of Σ in the nonstandard reasoning.

1Namely, for any model M of Σ, M |= φ.
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Figure 3.1: Linear Extension Strategy.

3.2 Strategies

A linear extension strategy is carried out as shown in Figure 3.1. Given a query
Σ |≈ φ, the initial consistent subset Σ′ is set. Then the selection function is called
to return a consistent subset Σ′′, which extends Σ′, i.e., Σ′ ⊂ Σ′′ ⊆ Σ for the linear
extension strategy. If the selection function cannot find a consistent superset of Σ′,
the inconsistency reasoner returns the answer ‘undetermined’ (i.e., unknown) to the
query. If the set Σ′′ exists, a classical reasoner is used to check if Σ′′ |= φ holds. If
the answer is ‘yes’, the reasoner returns the ’accepted’ answer Σ |≈ φ. If the answer is
‘no’, the reasoner further checks the negation of the query Σ′′ |= ¬φ. If the answer is
‘yes’, the reasoner returns the ’rejected’ answer Σ |≈ ¬φ, otherwise the current result
is undetermined, and the whole process is repeated by calling the selection function
for the next consistent subset of Σ which extends Σ′′.

It is clear that the linear extension strategy may result in too many ‘undetermined’
answers to queries when the selection function picks the wrong sequence of monotoni-
cally increasing subsets. It would therefore be useful to measure the successfulness of
(linear) extension strategies. Notice, that this depends on the choice of the monotonic
selection function.

In general, one should use an extension strategy that is not over-determined (i.e.,
the selected set is inconsistent) and not undetermined. For the linear extension strat-
egy, we can prove that a reasoner using a linear extension strategy may be undeter-
mined, always sound, and always meaningful[20]. A reasoner using a linear extension
strategy is useful to create meaningful and sound answers to queries. The advantages
of the linear strategy is that the reasoner can always focus on the current working set
Σ′2. The reasoner doesn’t need to keep track of the extension chain. The disadvantage
of the linear strategy is that it may lead to an inconsistency reasoner that is undeter-
mined. There exists other strategies which can improve the linear extension approach,

2Alternatively it is called the selected set.

14 of 64



FP7 – 215535

Deliverable 4.3.1

for example, by backtracking and heuristics evaluation. We will discuss how it can be
achieved in the over-determined processing in Section Over-determined Processing.

3.3 Relevance based Selection Functions

[8] proposes a syntactic relevance to measure the relationship between two formulas
in belief sets, so that the relevance can be used to guide the belief revision based on
Schaerf and Cadoli’s method of approximate reasoning[34]. Given a formula set Σ,
two atoms p, q are directly relevant, denoted by R(p, q,Σ) iff there is a formula α ∈ Σ
such that p, q appear in α. A pair of atoms p and q are k-relevant with respect to Σ
iff there exist p1, p2, . . . , pk ∈ L such that: (a) p, p1 are directly relevant; (b) pi, pi+1

are directly relevant, i = 1, . . . , k − 1; and (c) pk, q are directly relevant (i.e., directly
relevant is k-relevant for k = 0).

The notions of relevance above are based on propositional logics. However, ontology
languages are usually written in some fragment of the first order logic. We extend the
ideas of relevance to ontology language. The Direct relevance between two formulas
are defined as a binary relation on formulas, namely R ⊆ L × L. Given a direct
relevance relation R, we can extend it to a relation R+ on a formula and a formula
set, i.e., R+ ⊆ L× P(L) as follows:

〈φ,Σ〉 ∈ R+ iff ∃ψ ∈ Σ such that 〈φ, ψ〉 ∈ R.

Namely, a formula φ is relevant to a knowledge base Σ iff there exists a formula
φ′ ∈ Σ such that φ and φ′ are directly relevant. We can similarly specialize the notion
of k-relevance. Two formulas φ, φ′ are k-relevant with respect to a formula Σ iff there
exist formulas φ0, . . . φk ∈ Σ such that φ and φ0, φ0 and φ1, . . ., and φk and φ′ are
directly relevant. A formula φ is k-relevant to a set Σ iff there exists a formula φ′ ∈ Σ
such that φ and φ′ are k-relevant with respect to Σ.

We can use a relevance relation to define a selection function s to extend the query
‘Σ |≈ φ?’ as follows: We start with the query formula φ as a starting point for the
selection based on syntactic relevance. Namely, we define:

s(Σ, φ, 0) = ∅.

Then the selection function selects the formulas ψ ∈ Σ which are directly relevant to
φ as a working set (i.e. k = 1) to see whether or not they are sufficient to give an
answer to the query. Namely, we define:

s(Σ, φ, 1) = {ψ ∈ Σ | φ and ψ are directly relevant}.

If the reasoning process can obtain an answer to the query, it stops. Otherwise the
selection function increases the relevance degree by 1, thereby adding more formulas
that are relevant to the current working set. Namely, we have:

s(Σ, φ, k) = {ψ ∈ Σ | ψ is directly relevant to s(Σ, φ, k − 1)},

for k > 1. This leads to a ”fan out” behavior of the selection function: the first selection
is the set of all formulae that are directly relevant to the query; then all formulae are
selected that are directly relevant to that set, etc. This intuition is formalized in this:
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The relevance-based selection function s is monotonically increasing. We observe that
If k ≥ 1, then

s(Σ, φ, k) = {φ|φ is (k-1)-relevant to Σ}

The relevance-based selection functions defined above usually grows up to an incon-
sistent set rapidly. That may lead to too many undetermined answers. In order to
improve it, we can require that the selection function returns a consistent subset Σ′′

at the step k when s(Σ, φ, k) is inconsistent such that s(Σ, φ, k− 1) ⊂ Σ′′ ⊂ s(Σ, φ, k).
It is actually a kind of backtracking strategies which are used to reduce the num-
ber of undetermined answers to improve the linear extension strategy. We call the
procedure an over-determined processing(ODP) of the selection function. Note that
the over-determined processing does not need to exhaust the powerset of the set
s(Σ, φ, k)− s(Σ, φ, k−1), because of the fact that if a consistent set S cannot prove or
disprove a query, then nor can any subset of S. Therefore, one approach of ODP is to
return just a maximally consistent subset. Let n be |Σ| and k be n− |S|, i.e., the car-
dinality difference between the ontology Σ and its maximal consistent subset S (note
that k is usually very small), and let C be the complexity of the consistency checking.
The complexity of the over-determined processing is polynomial to the complexity of
the consistency checking. Note that ODP introduces a degree of non-determinism:
selecting different maximal consistent subsets of s(Σ, φ, k) may yield different answers
to the query Σ |≈ φ. The simplest example of this is Σ = {φ,¬φ}.
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4. Interleaving Reasoning and Selection in the LarKC Platform

4.1 LarKC Platform

4.1.1 LarKC Architecture

In this document, we consider the LarKC architecture which has been proposed in
[43]. Figure 4.1 shows a detailed view of the LarKC Platform architecture.

The LarKC platform has been designed in a way so that it is as lightweight as
possible, but must provide all necessary features to support both users and plug-ins.
For this purpose, the following components are distinguished as part of the LarKC
platform:

• Plug-in API: it defines interfaces for required behaviour from plug-in and there-
fore provides support for interoperability between platform and plug-ins and
between plug-ins.

• Data Layer API: the Data Layer provides support for data access and manage-
ment via its API.

• Plug-in Registry: it contains all necessary features for plug-in registration and
discovery

• Pipeline Support System: it provides support for plug-in instantiation, through
the deployment of plug-in managers, and for monitoring and controlling plug-in
execution at pipeline level.

Figure 4.1: The LarKC Platform Architecture
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• Plug-in Managers: provide support for monitoring and controlling plug-ins exe-
cution, at plugin level. An independent instance of Plug-in Manager is deployed
for each plug-in to be executed. This component includes the support for both
local and remote deployment and management of plug-ins.

• Queues: provide support for deployment and management of the communication
pipes between platform and plug-ins and between plug-ins.

4.1.2 LarKC Plug-ins

All LarKC plug-ins share a common super class, which is the Plugin class. This class
provides that functionality which is common to all plug-in types. The interface of the
Plugin class can be seen below:

public interface Plugin
{ public String getIdentifier();

public MetaData getMetaData();
public QoSInformation getQoSInformation();
public void setInputQuery(Query theQuery);

}
Namely, all plug-ins are identified by a name, which is a string. Plug-ins provide

meta data that describes the functionality that they offer. Plug-ins provide Quality
of Service (QoS) information regarding how they perform the functionality that they
offer. All plug-ins may need access to the initial query (entry query in the LarKC
platform) and thus a mutator is provided by specifying this query.

4.1.3 LarKC Selection Plug-ins

The LarKC Selection plug-in are used for taking a selection (or a sample) of the Data
Set that has been made available by some previous processes, say an identify plug-in
on which reasoning should be performed. The output of a Selection plug-in is a Triple
Set, which is essentially a subset of the input Data Set.

The interface of the Selection Plug-in is:

public interface Selecter extends Plugin

{
public SetOfStatements select(SetOfStatements theSetOfStatements, Contract con-

tract, Context context);
}
Thus the Select plug-in takes a set of statement as input, identifies a selection from

this dataset according to its strategy and returns a set of statements according to the
contract and the context. The contract is used to define the dimensions of the output.
The context defines the special information of the reasoning task. An example of a
Selection plug-in would be one that extracts a particular number of triples from each
of the RDF graphs within the Data Set to build the Triple Set. The Contract in this
case would define the number of triples to be present in the output Triple Set, or the
number of triples to extract from the each of the RDF graphs in the Data Set.

18 of 64



FP7 – 215535

Deliverable 4.3.1

Selection plug-in is not necessarily independent of the user query. All plug-ins have
a method to accept the user query and this is passed as part of pipeline construction.
The query is known beforehand, so there is no need to pass this query to the selecter
upon every invocation.

4.1.4 LarKC Reasoning Plug-ins

The reasoning plug-in executes a given SPARQL Query against a Triple Set provided
by a Selection plug-in. The interface of the reasoning plug-in can be seen below:

public interface Reasoner extends Plugin {
public VariableBinding sparqlSelect(SPARQLQuery theQuery, SetOfStatements

statements, Contract contract, Context context);
public RdfGraph sparqlConstruct(SPARQLQuery theQuery, SetOfStatements state-

ments, Contract contract, Context context);
public RdfGraph sparqlDescribe(SPARQLQuery theQuery, SetOfStatements state-

ments, Contract contract, Context context);
public BooleanInformationSet sparqlAsk(SPARQLQuery theQuery, SetOfStatements

statements, Contract contract, Context context);
}
The reasoning plug-in supports the four standard methods for a SPARQL endpoint,

namely select, describe, construct and ask. The input to each of the reason methods
are the same and includes the query to be executed, the statement set to reason over,
the contract, which defines the behavior of the reasoner, and the context, which defines
the special information of the reasoning task. The output of these reasoning methods
depends on the reasoning task being performed. The select method returns a Variable
Binding as output where the variables correspond to those specified in the query. The
construct and describe methods return RDF graphs, in the first case this graph is
constructed according to the query and in the second the graph contains triples that
describe the variable specified in the query. Finally ask returns a Boolean Information
Set as output, which is true if the pattern in the query can be found in the Triple Set
or false if not.

4.1.5 LarKC Decider Plug-ins

The Decider plug-in is responsible for building and maintaining the pipeline containing
the other plug-in types, and managing the control flow between these plug-ins.

The interface of this plug-in can be seen below:

public interface Decider extends Plugin {
public VariableBinding sparqlSelect(SPARQLQuery theQuery, QoSParameters the-

QoSParameters);
public SetOfStatements sparqlConstruct(SPARQLQuery theQuery, QoSParame-

ters theQoSParameters);
public SetOfStatements sparqlDescribe(SPARQLQuery theQuery, QoSParameters

theQoSParameters);
public BooleanInformationSet sparqlAsk(SPARQLQuery theQuery, QoSParame-

ters theQoSParameters);
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}
The interface of the Decider plug-in is very similar to that of the reasoning plug-in.

The major difference is that actual data to reason over is not explicitly specified, as
the Identify plug-in is responsible for finding the data within the pipeline.

4.2 Interleaving Reasoning and Selection

In the following, we examine a framework of interleaving reasoning and selection in
the setting of the LarKC platform. We will propose several selection functions which
which are based on the LarKC data model, namely, in which a knowledge base is
considered to be triple sets.

In the LarKC platform, ontology data are represented as a SetofStatements. Namely,
they are a set of RDF statements. We can consider a RDF statement as a triple. Thus,
conceptually, ontology data can be considered as a set of triples. Alternatively, it is
called a triple set. A triple t has the form 〈s, p, o〉 where s is called a subject, p is
called a predicate, and o is called an object of the triple.

For OWL ontology data, we usually use the popular DL reasoners such as Racer,
FACT++, KAON2, and Pellet to obtain the standard DL reasoner support if OWL
ontology data is consistent and can be handled by those DL reasoners. All of those
popular Dl reasoners provide the DIG interface. Thus, those popular DL reasoners
can serve as an external reasoner which can be called within the LarKC platform via
its DIG interface reasoner plugin. Furthermore, OWL APIs provide OWL-DL/OWL2
reasoning interface, which is considered as a new generation and updated DIG inter-
face. Thus, in the LarKC platform, we will use the OWL APIs reasoner plug-in for
reasoning with OWL ontology data. In the following, we will use |= to denote the
standard DL reasoning.

In the LarKC platform, a query of a reasoner is represented as a SPARQL query,
like sparqlAsk and sparqlSelect, which have been discussed in the previous section. The
SPARQL query language is designed for querying with RDF data originally. Thus, it
is too powerful for a DL-based reasoner for reasoning with OWL ontology data. Thus,
we will consider only the limited part of the SPARQL language, which is called as
SPARQL-DL, i.e., the part of the SPARQL which corresponds with DL expressions
semantically. SPARQL-DL can be considered as a special case of conjunctive queries
for DL, which provide a facility for databaselike querying with DL data. In the follow-
ing, we will use a formula φ to denote a SPARQL-DL query. Semantically, a formula
φ corresponds to be a set of triples which is implied by the formula. Namely,

[[φ]] = {t : φ |= t}

A SparqlAsk query corresponds with a query formula φ in which there are no free
variables. A SparqlSelect query corresponds with a query formula φ in which there
are some free variables. For a triple set Σ and a query φ, we use Σ |= φ to denote that
Σ |= t for all t ∈ [[φ]].

Various selection functions can be defined in the LarKC platform. In the following,
we will propose several selection functions for the processing of interleaving reasoning
and selection.
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4.3 Syntactic Relevance based Selection Functions

Syntactic relevance means that the relevance is measured with respect to symbolic ap-
pearrance of two triple sets without considering the semantics of the symbols. However,
we should ignore the predicates of triples when two trilples are examined with respect
to their relevance, because many predicates such as ”rdf:type” and ”rdfs:subClassOf”
appear frequently in a RDF/RDFS data set, which suggests nothing on the relevance
of two triples. Thus, we can define a syntactic relevance relation Syn on two triples
as follows.

For any triple t1 = 〈s1, p1, o1〉 and any triple t2 = 〈s2, p2, o2〉,

〈t1, t2〉 ∈ Syn iff s1 = s2 or s1 = o2 s2 = o1 or o1 = o2.

Thus, we can extend this relevance measure to the relevance measure between a
triple and a triple set Σ as discussed in the previous chapter. Namely, a triple t is
said to be relevant with a triple set Σ if there exists a triple t′ ∈ Σ such as t and t′

are relevant (with respect to the relation Syn). Furthermore, we can define a relevant
subset of a triple set Σ with respect to a relevance relation Syn and a triple set Σ′,
written Syn(Σ,Σ′) as follows:

Syn(Σ,Σ′) = {t ∈ Σ : t is relevant with Σ′ with respect to the relevance relation
Syn.}

Now, we can define a selection function s with respect to a relevance relation Syn
as follows:

(i) s(Σ, φ, 0) = ∅;
(ii)s(Σ, φ, 1) = Syn(Σ, [[φ]]);
(iii) s(Σ, φ, k) = Syn(Σ, s(Σ, φ, k − 1)), for k > 1.

Furthermore, we can define a syntactic relevance relation SynC which considers only
the relevance with concepts as follows:

For any triple t1 = 〈s1, p1, o1〉 and any triple t2 = 〈s2, p2, o2〉,

〈t1, t2〉 ∈ SynC iff 〈t1, t2〉 ∈ Syn and
((p1 =”rdfs:subClassOf” and o1 6=”owl:Thing” and s1 6=”owl:Nothing”) or
(p2 =”rdfs:subClassOf” and o2 6=”owl:Thing” and s2 6=”owl:Nothing”)).

In the concept relevance measure above, we consider the triples which state the
subClassOf relation and ignore their relevance of the trivial subClassOf relation via
the top concept and the bottom concept.

4.4 Semantic Relevance based Selection Functions

The syntactic relevance-based selection functions prefer shorter paths to longer paths
in the reasoning. It requires knowledge engineers should carefully design ontologies to
avoid unbalanced reasoning path. Naturally we will consider semantic relevance based
selection functions as alternatives of syntactic relevance based selection functions. In
[22] we propose a semantic relevance based section function that is developed based
on Google distances. Namely, we want to take advantage of the vast knowledge on
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the web by using Google based relevance measure, by which we can obtain light-
weight semantics for selection functions. The basic assumption here is that: more
frequently two concepts appear in the same web page, more semantically relevant
they are, because most of web pages are meaningful texts. Therefore, information
provided by a search engine can be used for the measurement of semantic relevance
among concepts. We select Google as the targeted search engine, because it is the
most popular search engine nowaday. The second reason why we select Google is that
Google distances are well studied in [10, 9].

In [10, 9], Google Distances are used to measure the co-occurrence of two keywords
over the Web. Normalized Google Distance (NGD) is introduced to measure semantic
distance between two concepts by the following definition:

NGD(x, y) =
max{logf(x), logf(y)} − logf(x, y)

logM −min{logf(x), logf(y)}

where
f(x) is the number of Google hits for the search term x,
f(y) is the number of Google hits for the search term y,
f(x, y) is the number of Google hits for the tuple of search terms x and y, and,
M is the number of web pages indexed by Google.
NGD(x, y) can be understood intuitively as a measure for the symmetric condi-

tional probability of co-occurrence of the search terms x and y.
NGD(x, y) takes a real number between 0 and 1. NGD(x, x) = 0 means that

any search item is always the closest to itself. NGD(x, y) is defined for two search
items x and y, which measures the semantic dissimilarity, alternatively called semantic
distance, between them.

The semantic relevance is considered as a reverse relation of the semantic dissimi-
larity. Namely, more semantically relevant two concepts are, smaller distance between
them. Mathematically this relation can be formalized by the following equation if the
similarity measurement and the distance measurement take a real number between 0
and 1.

Similarity(x, y) = 1−Distance(x, y).

In the following we use the terminologies semantic dissimilarity and semantic dis-
tance interchangeably. To use NGD for reasoning with inconsistent ontologies, we
extend this dissimilarity measure on two triples in terms of the dissimilarity measure
on the distances between two concepts/roles/individuals from the two triples. More-
over, in the following we consider only concept names C(t) as the symbol set of a triple
t to simplify the formal definitions. However, note that the definitions can be easily
generalized into ones in which the symbol sets contain roles and individuals. We use
SD(t1, t2) to denote the semantic distance between two triples. We expect semantic
distances between two formulas SD(t1, t2) satisfying the following intuitive properties:

• (i) (Range) The semantic distances are real numbers between 0 and 1. Namely,
0 ≤ SD(t1, t2) ≤ 1 for any t1 and t2.

• (ii) (Reflexivity) Any triple is always semantically closest to itself. Namely,
SD(t, t) = 0 for any t.
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• (iii) (Symmetry) The semantic distances between two triples are symmetric.
Namely, SD(t1, t2) = SD(t2, t1) for any t1 and t2.

• (iv) (Remoteness) If all symbols in a triple is semantically most-dissimilar
from any symbol of another triple, then these two triples are totally semantic-
dissimilar. Namely, if NGD(Ci, Cj) = 1 for all Ci ∈ C(t1) and Cj ∈ C(t2), then
SD(t1, t2) = 1.

• (v) (Intermediary) If there are some shared symbols which appear in both
triples and some symbols are semantically dissimilar between two triples, then
the semantic distance between two triples are neither the closest, nor are the
most dissimilar. Namely, if C(t1) ∩ C(t2) 6= ∅ and C(t1) 6= C(t2), then 0 <
SD(t1, t2) < 1.

However, note that the semantic distance does not always satisfy the triangle Inequality

SD(t1, t2) + SD(t2, t3) ≥ SD(t1, t3),

a basic property of distances in a metric topology. [25] provides a counter-example of
the Triangle Inequality in semantic similarity measure.

Simple ways to define the semantic distance between two triples is to take the mini-
mal or the maximal or the average NGD values between two concepts/roles/individuals
which appear in two triples as follows:

SDmin(t1, t2) = min{NGD(C1, C2)|C1 ∈ C(t1)
and C2 ∈ C(t2)}

SDmax(t1, t2) = max{NGD(C1, C2)|C1 ∈ C(t1)
and C2 ∈ C(t2)}.

SDave(t1, t2) = sum{NGD(C1, C2)|C1 ∈ C(t1)
and C2 ∈ C(t2)}/(|C(t1)| ∗ |C(t2)|)

where |C(t)| means the cardinality of C(t). However, it is easy to see that SDmin

and SDmax do not satisfy the property (v)Intermediary, and SDave do not satisfy the
properties (ii) Reflexivity and (iv) Remoteness.

In the following, we propose a semantic distance which is measured by the ratio of
the distance sum of the difference between two formulas to the total distance sum of
the symbols between two triples.

Definition 1 (Semantic Distance between two triples)

SD(t1, t2) = sum{NGD(Ci, Cj)|Ci, Cj ∈ (C(t1)/C(t2))∪
(C(t2)/C(t1))}/(|C(t1)| ∗ |C(t2)|)

It is easy to prove that the following proposition holds:

Proposition 4.4.1 The semantic distance SD(φ, ψ) satisfies the properties (i)Range,
(ii)Reflexivity, (iii)Symmetry, (iv)Remoteness, and (v)Intermediary.
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Using the semantic distance defined above, we can define a relevance relation for
selection functions. Naturally, an easy way to define a direct relevance relation between
two triples in an ontology Σ is to define them as the semantically closest triples, i.e.,
there exist no other triples in the ontology that is semantically more close, like this,

〈t1, t2〉 ∈ Rsd iff ¬∃t′ ∈ Σ(SD(t1, t
′) < SD(t1, t2)).

Based on the semantic relevance above, we can define the selection functions like
those defined in the previous section.

Using semantic distances, we propose a specific approach to deal with subsumption
queries which have the form like C1 v D where C1 is a concept. In this new approach,
C1 is considered as a center concept of the query, and the newly defined selection
function will track along the concept hierarchy in an ontology and always add the
closest formulas (to C1) which have not yet been selected, into the selected set as
follows:

s(Σ, C1 v D, 0) = ∅.

Then the selection function selects the formulas φ ∈ Σ which is the closest to C1 as
a working set (i.e. k = 1) to see whether or not they are sufficient to give an answer
to the query. Namely, we define1

s(Σ, C1 v D, 1) = {t ∈ Σ | ¬∃t′ ∈ Σ(SD(t′, C1) <
SD(t, C1))}

If the reasoning process can obtain an answer to the query, it stops. Otherwise
the selection function selects the formulas that are closest to the current working set.
Namely, we have:

s(Σ, C1 v D, k) = {t ∈ Σ | ¬∃t′ ∈ Σ(SD(t′, C1) <
SD(t, C1) ∧ ψ 6∈ s(Σ, C1 v D,
k − 1))} ∪ s(Σ, C1 v D, k − 1)

for k > 1.

4.5 Strategies

4.5.1 Variant Strategies of Interleaving Reasoning and Selection

Various strategies can be developed for interleaving reasoning and selection of axioms.
In Chapter 5, we will intestigate the processing of interleaving reasoning and selection
via a relevance measure with respect to the connections among nodes in triples. That
would provide an approach of granular reasoning in which varous granularity of web
scale data can be selected for reasoning to improve the scalability. In Chapter 6, we
will propose a different strategies for interleaving reasoning and selection of axioms,
by selecting a sub-language of ontology data, namely, by focusing on axioms in which
some pre-selected concepts appear.

1It is easy to see the definition about SD(t1, t2) is easily extended into a definition about SD(t1, C),
where t1, t2 are triples, and C is a concept.
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4.5.2 Strategies for Over-determined Processing

For inconsistent ontology data, reasoning extension procedure usually grows up to
an inconsistent set rapidly. That may lead to too many undetermined answers. In
order to improve it, over-determined processing (ODP) is introduced, by which we
require that the selection function returns a consistent subset Σ′′ at the step k when
s(Σ, φ, k) is inconsistent such that s(Σ, φ, k − 1) ⊂ Σ′′ ⊂ s(Σ, φ, k). It is actually a
kind of backtracking strategies used to reduce the number of undetermined answers
to improve the extension strategy. An easy solution to the over-determined processing
is to return the first maximal consistent subset (FMC) of s(Σ, φ, k), based on certain
search procedure. Query answers which are obtained by this procedure are still sound,
because they are supported by a consistent subset of the ontology. However, it does
not always provide intuitive answers because it depends on the search procedure of
maximal consistent subset in over-determined processing.

One of the improvements for the over-determined processing is to use the semantic
relevance information. For example, we can prune semantically less relevant paths
to obtain a maximal consistent set. Namely, In the over-determined processing, the
reasoning processing will remove the most dissimilar formulas from the set s(Σ, φ, k)−
s(Σ, φ, k−1) first, until it can find a maximal consistent set such that the query φ can
be proved or disproved.
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5. Unifying Search and Reasoning from the Viewpoint of Gran-
ularity

5.1 Introduction

The assumption of traditional reasoning methods do not fit very well when facing
Web scale data. One of the major problems is that acquiring all the relevant data is
very hard when the data goes to Web scale. Hence, unifying reasoning and search is
proposed [12]. Under this approach, the search will help to gradually select a small
set of data (namely, a subset of the original dataset), and provide the searched results
for reasoning. If the users are not satisfied with the reasoning results based on the sub
dataset, the search process will help to select other parts or larger sub dataset prepared
for producing better reasoning results [12]. One detailed problem is that how to search
for a good or more relevant subset of data and do reasoning on it. In addition, the
same strategy may not meet the diversity of user needs since their backgrounds and
expectations may differ a lot. In this chapter, we aim at solving this problem.

Granular computing, a field of study that aims at extracting the commonality of
human and machine intelligence from the viewpoint of granularity [46, 47], emphasizes
that human can always focus on appropriate levels of granularity and views, ignoring
irrelevant information in order to achieve effective problem solving [47, 49]. This
process contains two major steps, namely, the search of relevant data and problem
solving based on searched data. As a concrete approach for problem solving based on
Web scale data, the unification of search and reasoning also contains these two steps,
namely, the search of relevant facts, and reasoning based on rules and searched facts.
A granule is a set of elements that are drawn together by their equality, similarities,
indistinguishability from some aspects (e.g. parameter values) [45]. Granules can be
grouped into multiple levels to form a hierarchical granular structure, and the hierarchy
can also be built from multiple perspectives [47]. Following the above inspirations, the
web of data can be grouped together as granules in different levels or under different
views for searching of subsets and meeting various user needs. From the perspective of
granularity, we provide various strategies for unifying user driven search and reasoning
under time constraints. From the multilevel point of view, in order to meet user needs
in different levels, unifying search and reasoning with multilevel completeness and
multilevel specificity are proposed. Furthermore, from the multiperspective point of
view, the unifying process can be investigated based on different perspectives of the
knowledge source. We also propose unifying search and reasoning with a starting
point, which is inspired by the basic level advantage from cognitive psychology [32],
to achieve diversity and scalability.

Section 5.2 introduces some basic notions related to this study. Section 5.3 give a
very preliminary discussion on the search and reasoning process on a knowledge graph.
The rest of this chapter focuses on introducing various strategies for unifying search
and reasoning from the viewpoint of granularity: Section 5.4 discusses the starting
point strategy. Section 5.5 introduces the multilevel completeness strategy. Section 5.6
introduces unifying strategy with multilevel specificity. Section 5.7 investigates on the
multiperspective strategy. In Section 5.8, for each strategy introduced in this chapter,
we provide some preliminary experimental results based on a semantic Web dataset
SwetoDBLP, an RDF version of the DBLP dataset [3]. Section 5.9 discusses some
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related work. Finally, Section 7 makes concluding remarks by highlighting major
contributions of this chapter.

5.2 Basic Notions

In this section, we introduce some basic notions for unifying selection and reasoning
from the viewpoint of granularity, namely, knowledge graph, granule, level, perspective,
which are fundamental thoughts that this study is built upon.

5.2.1 Knowledge Graph

We consider knowledge graphs as a general data model for Web data/knowledge (e.g.,
RDF/RDFS data and OWL ontologies). Thus, in this chapter, granular reasoning is
based on graph representation of knowledge.

Definition 2 (Knowledge Graph) A knowledge graph (KG) is defined as:

KG = 〈N,E, T 〉, (5.1)

where N is a set of nodes, E is a set of edges, and T is a triple set of N × E ×N .1

In a knowledge graph, the edges are with directions, and the nodes can be understood
as classes in RDF/RDFS modeling. The relationship of two nodes in a knowledge
graph is represented as a triple t = 〈s, p, o〉. The subject (s) and object (o) are nodes
from N , and the predicate (p) is from the set of edges (namely p ∈ E). T is a set of
triple sets (t ∈ T ). 2

Definition 3 (Node Degree) For a node n in the knowledge graph KG = 〈N,E, T 〉,
its degree degree(n) is measured by:

degree(n) = degreein(n) + degreeout(n),
degreein(n) = |{〈s, p, n〉 : 〈s, p, n〉 ∈ T}|,
degreeout(n) = |{〈n, p, o〉 : 〈n, p, o〉 ∈ T}|,

(5.2)

where degreein(n) denotes the in-degree of n, while degreeout(n) denotes the out-degree.

Definition 4 (Edge Degree) Given a knowledge graph KG = 〈N,E, T 〉, the edge
degree e is defined as:

degree(e) = |{〈s, e, o〉 : 〈s, e, o〉 ∈ T}|, (5.3)

Definition 5 (Normalized Degree) The normalized node degree or edge degree can
be represented as:

normalized degree(n) = degree(n)
maxn′∈N{degree(n′)} ,

normalized degree(e) = degree(e)
maxe′∈E{degree(e′)} .

(5.4)

The normalized degree(n) or normalized degree(e) can give a relative evaluation
on the importance of the node or the edge in the KG.

1The definition of the knowledge graph can be extended to be with weighted edges. Namely, a
weighted knowledge graph WKG = 〈N,E, T, R〉 where R : T → R is a mapping which assigns a
triple t ∈ T a real number r ∈ R.

2A knowledge graph is said to be a first order one if its node set and its edge set are disjoint (i.e.,
N ∩ E = ∅). If a knowledge graph G is a second order one, then an edge can be a node.
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5.2.2 Granule

In the context of the KG, a granule is a set of nodes that are grouped together by
equality, similarity, indistinguishability, etc [14, 47]. A granule can be a singleton, i.e.,
{n}. When a granular is a singleton, we can use a node n to denote a granule.

We define a general binary relation “contains” to represent the hierarchical relation
among granules3. We assume that this relation satisfy the following rational postulates:

(1) Reflexivity: ∀g [g contains g],
(2) Transitivity: ∀ g1, g2, g3 [g1 contains g2, g2 contains g3 ⇒ g1 contains g3],
(3) Antisymmetricity: ∀g1, g2 [(g1 contains g2) ∧ (g1 6= g2) ⇒ ¬(g1 contains g2)],
(4) Universal container: ∃>∀g [> contains g],
(5) Bottom container: ∃⊥∀g [g contains ⊥].

5.2.3 Perspective

In a knowledge graph, there might be various types of edges, if we consider creating a
series of subgraphs by a subset of the edge type, several subgraphs reflecting different
characteristics of the knowledge graph can be acquired.

Definition 6 (Perspective) In a knowledge graph KG, a perspective P is a subset
of edges (i.e., P ⊆ E).

A perspective is a viewpoint to investigate the KG. It can be a singleton (namely,
P = {e}) or a set of predicates. Different perspectives reflect various characteristics
of the graph. The set of all perspectives P ⊆ E collectively describe a graph from
multiple viewpoints. Under a specified perspective, a subgraph of KG is generated,
the node degree of this subgraph may reflect a unique characteristic of the original
KG.

Definition 7 (Node Degree under a Perspective) The Node Degree under a per-
spective is defined as:

degree(n, P ) = degreein(n, P ) + degreeout(n, P ),
degreein(n, P ) = |{〈s, p, n〉 : 〈s, p, n〉 ∈ T and p ∈ P}|,
degreeout(n, P ) = |{〈n, p, o〉 : 〈s, p, n〉 ∈ T and p ∈ P}|,

(5.5)

where degreein(n, P ) and degreeout(n, P ) denote the indegree and outdegree for the
node n under the perspective P respectively.

Proposition 5.2.1 (Formal Properties of Node Degree under a Perspective)
For a knowledge graph KG = 〈N,E, T 〉, the following properties hold:
(1) Monotonicity: P ′ ⊆ P ′′ ⇒ degree(n, P ′) ≤ degree(n, P ′′),

(2) Triviality: P ′ = E ⇒ degree(n, P ′) = degree(n),
(3) Emptyness: P ′ = ∅ ⇒ degree(n) = 0,
(4) Union: degree(n, P ′ ∪ P ′′) ≤ degree(n, P ′) + degree(n, P ′′),
(5) Disjointness: P ′ ∩ P ′′ = ∅ ⇒ degree(n, P ′ ∪ P ′′) = degree(n, P ′) + degree(n, P ′′).

3For ontologies, the contain relation can be understood as the union of the subClassOf and
the instanceOf relation, etc. From the perspective of the set theory, the contain relation can be
understood as either the subset relation or the membership relation. Namely, contains = {⊆,⊂,∈}.
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Definition 8 (Normalized Node Degree under a Perspective)

normalized degree(n, P ) =
degree(n, P )

maxn′∈N{degree(n′, P )}
, (5.6)

Normalized node degree under a perspective can be used to evaluate the relative
importance of a node in a knowledge graph.

5.2.4 Level

Granularity is the grain size of granules. In a knowledge graph, a level of granularity,
denoted as Lg(i) (where i is a positive integer, i ∈ I+), can be considered as a parti-
tion/covering over the set of all granules or the set of all nodes if we only consider sin-
gleton granules. A level of granularity Lg(i) is finer than Lg(j) iff the partition/covering
in Lg(i) is finer than Lg(j).

Considering the semantics of the nodes in a knowledge graph, some nodes are more
general, while some are more specific than others. Hence, they belong to different level
of specificity, denoted as Ls(i) (where i ∈ I+). Let gm, gn be two granules, and the level
of specificity Ls(i) is said to the next level of specificity Ls(i−1), written Ls(i) � Ls(i−1)

if the following conditions are satisfied:

• Exclusion. Any two granules which are located at the same level would not
contain each other. ∀ gm, gn ∈ Ls(i)[¬(gm contains gn) ∧ ¬(gn contains gm)].

• Neighboring. There are no middle granules which are located in two neighbor-
ing levels. (gm contains gn) ∧ (gm ∈ Ls(i)) ∧ (gn ∈ Ls(i−1)) ⇒
@g′[(gm contains g′) ∧ (g′ contains gn)].

5.3 Searching and Reasoning on a Knowledge Graph

In general, in the context of knowledge graph (KG), we can consider a task of reasoning
is to check whether or not a KG entails a triple t, written as KG |= t4. We can extend
this entailment relation with a knowledge graph and a triple set as follows:

KG |= {t1, . . . , tn} iff KG |= t1, . . . , KG |= tn.

Traditional reasoning method cannot be used to handle knowledge graph with large
scale. Hence, selecting and do reasoning on subgraphs of KG may be appropriate
as an approximation approach. Unifying search and reasoning from the viewpoint of
granularity provides several strategies to achieve this goal on a KG. Generally, they
all follow an (iterative) procedure which consists of the following processing loop :
i) select part of the knowledge graph, i.e., find a subgraph KG′

i of KG where i is a
positive integer, i.e., i ∈ I+;
ii) apply the standard reasoning to check if KG′

i |= t for some triple t ∈ {t1, . . . , tn} 5;
iii) decide whether or not to stop the reasoning procedure or continue the reasoning
with gradually increased selected subgraph of the knowledge graph (Hence, KG′

1 ⊆
KG′

2 ⊆ ... ⊆ KG).

4In logics, this entailment relation can be formally defined as KG |= t iff for any model M of
KG,M |= t.

5Here we assume standard reasoning is sound.
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From this processing loop, it is easy to see that unifying search and reasoning is
with anytime behavior, hence each of the strategies introduced below can be considered
as a method for anytime reasoning.

5.4 Starting Point Strategy

Psychological experiments support that during problem solving, in most cases, people
try to investigate the problem starting from a “basic level” (where people find con-
venient to start according to their own background knowledge), in order to solve the
the problem more efficiently [32]. In addition, concepts in a basic level are used more
frequently than others [42]. Following this idea, we define that during the unification
of search and reasoning process on the Web for a specified user, there is a starting
point (denoted as SP ).

Definition 9 (Starting Point) A starting point SP consists of a set of nodes N
and a (relevant) perspective P . Namely, SP = 〈N ′, P ′〉, which satisfies the following
relevance condition:

∀p ∈ P ′∃n ∈ N ′[∃o(〈n, p, o〉 ∈ T ) ∨ ∃s(〈s, p, n〉 ∈ T )].

The nodes in N ′ is with orders which are ranked based on the node degree under the
specified perspective (degree(n, P ′)). Among these nodes, there is one node represent-
ing the user (e.g. a user name, a URI, etc.), and other nodes are related to this node
from the perspective P ′ which serve as the background for the user (e.g. user interests,
friends of the user, or other user familiar or related information).

A starting point SP can be understood as a context or background for reasoning
tasks which contains user related information (More specifically, for the LarKC project,
a starting point is used to create the context for retrieval and reasoning). It is easy to
see that this strategy would make sense only when a starting point should be connected
with the knowledge graph. A starting point is used for refining the unification of search
and reasoning process in the form that the user may prefer.

Following the idea of starting point, the search of important nodes for reasoning
can be based on the following strategies:

• Strategy 1 (Familiarity-Driven): The search process firstly select out the nodes
which are directly related to the SP for the later reasoning process, and SP
related results are ranked to the front of others.

• Strategy 2 (Novelty-Driven): The search process firstly select out the nodes
which are not directly related to the SP , then they are transferred to the rea-
soning process, and SP related nodes are pushed to the end of others.

Strategy 1 is designed to meet the user needs who want to get more familiar results
first. Strategy 2 is designed to meet the needs who want to get unfamiliar results first.
One example for strategy 2 is that in news search on the Web, in most cases the users
always want to find the relevant news webpages which have not been visited. We will
provide an example which uses strategy 1 in Section 5.8.2.
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5.5 Multilevel Completeness Strategy

Web scale reasoning is very hard to achieve complete results, since the user may not
have time to wait for a reasoning system going through the complete dataset. If the
user does not have enough time, a conclusion is made through reasoning based on a
searched partial dataset, and the completeness is not very high since there are still
some sets of data which remain to be unexplored. If more time is allowed, and the
reasoning system can get more sub datasets through search, the completeness can
migrate to a new level since the datasets cover wider range.

There are two major issues in this kind of unifying process of search and reasoning:
(1) Since under time constraint, a reasoning system may just can handle a sub dataset,
methods on how to select an appropriate subset need to be developed. (2) Since this
unification process require user judges whether the completeness of reasoning results is
good enough for their specific needs, a prediction method for completeness is required.
We name this kind of strategy as unifying search and reasoning with multilevel com-
pleteness, which provides reasoning results in multiple levels of completeness based
on the searched sub dataset under time constraints, meanwhile, provides prediction
on the completeness value for user judges. In this chapter, we develop one possible
concrete solution.

For issue (1), searching for a more important sub dataset for reasoning may be
a practical approach to select the subset effectively [12], and may be an approach
to handle the scalability issue, since in most cases, the amount of important data is
relatively small. Under the context of the Semantic Web, the semantic dataset can
be considered as a graph that contains a set of nodes (subjects and objects in RDF
dataset) and a set of relations (predicates in RDF dataset) on these nodes. Hence, in
this chapter, we borrow the idea of “pivotal node” from network science [5], we propose
a network statistics based data selection strategy. Under this strategy, we use the node
degree (denoted as degree(n)) to evaluate the importance of a node in a dataset. The
nodes with relatively high value of node degree are selected as more important nodes
and grouped together as a granule for reasoning tasks. In the context of a knowledge
graph, first we choose a perspective (P ) from the starting point (SP ) of a specified
user, then nodes with the same or close node degree under a perspective (degree(n, P ))
are grouped together as a granule (If the starting point does not provides constraints
for this, normally, edges with a relatively high edge degree (degree(e)) is suggested.).
Nodes are ranked according to degree(n, P ) for reasoning. With different number
of nodes involved, a subgraph with different scale is produced for reasoning, hence
reasoning results with multiple levels of completeness are provided.

For issue (2), here we give a formula to produce the predicted completeness value
(PC(i)) when the nodes which satisfy degree(n, P ) ≥ i (i is a nonnegative integer)
have been involved.

PC(i) =
|Nrel(i)| × (|Nsub(i)| − |Nsub(i′)|)

|Nrel(i)| × (|N | − |Nsub(i′)|) + |Nrel(i′)| × (|Nsub(i)| − |N |)
, (5.7)

where |Nsub(i)| represents the number of nodes which satisfy degree(n, P ) ≥ i, |Nrel(i)|
is the number of nodes which are relevant to the reasoning task among the involved
nodes Nsub(i), and |N | is the total number of nodes in the dataset. The basic idea
is that, first we can obtain a linear function which go through (|Nsub(i)|, |Nrel(i)|) and
(|Nsub(i′)|, |Nrel(i′)|) (i′ is the last assigned value of degree(n, P ) for stopping the rea-
soning process before i). Knowing |N | in the dataset (|N | only needs to be acquired
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once and can be calculated offline), by this linear function, we can predict the number
of satisfied nodes in the whole dataset, then the predicted completeness value can be
acquired.

5.6 Multilevel Specificity Strategy

Reasoning results can be either very general or very specific. If the user has not enough
time, the search and reasoning process will just be on a very general level. And if more
time is available, this process may go to a more specific level which contains results in
a finer level of grain size (granularity). Namely, the unification of search and reasoning
can be with multilevel specificity, which provides reasoning results in multiple levels
of specificities under time constraints.

The study of the semantic networks emphasizes that knowledge is stored as a sys-
tem of propositions organized hierarchically in memory [11]. The concepts in various
levels are with different levels of specificities. Hence, the hierarchical knowledge struc-
ture can be used to supervise the unification of search and reasoning with multilevel
specificity.

Definition 10 (Hierarchical Knowledge Structure) Although as a whole, a knowl-
edge graph does not force a hierarchical organization, some ordered nodes (n ∈ N) and
their interrelation “contains” can form a subgraph of KG, which is a hierarchical
knowledge structure(HKS), which can be represented as:

HKS = 〈N, {contains}, T 〉. (5.8)

In the HKS, some nodes are with a coarser level of granularity and are more general
than others, while some of them are more specific, and with a finer level of granularity.
The nodes are well ordered by the “contains” relations. In the unification process of
search and reasoning with multilevel specificity strategy, the search of sub datasets is
based on the hierarchical relations (e.g. sub class of, sub property of, instance of, etc.)
among the nodes (subjects and objects in RDF) in the HKS and is forced to be related
with the time allowed. Nodes which are not sub classes, instances or sub properties
of other nodes will be searched out as the first level for reasoning. If more time is
available, more deeper levels of specificity can be acquired according to the transitive
property of these hierarchical relations. The specificity will just go deeper for one level
each time before the next checking of available time (Nodes are searched out based
on direct hierarchical relations with the nodes from the former direct neighborhood
level).

5.7 Multiperspective Strategy

User needs may differ from each other when they expect answers from different per-
spectives. In order to avoid the failure of understanding in one way, knowledge needs
to be represented in different points of view [28]. If the knowledge source is inves-
tigated in different perspectives, it is natural that the search and reasoning results
might be organized differently. Each perspective satisfies user needs in a unique way.
As another key strategy, unifying search and reasoning from multiperspective aims at
satisfying user needs in multiple views.
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It is possible to choose all the edges in a KG as a perspective, but as mentioned
in Proposition 1(2), in this case, it will be too trivial to realize the uniqueness of each
type of edge, and may be hard to satisfy various user needs. In a KG, considering
each P ⊆ E, a subgraph KGP of the original one is generated. Different subgraphs
reflect various characteristics of the original one. Hence, perspectives and the different
characteristics reflected from these perspectives can be considered as another attempt
to meet the diverse user needs.

For a reasoning task, if the perspective in a starting point is available, the process
will take this acquired perspective. If not, the perspectives will be chosen by the nor-
malized edge degree (normalized degree(e)). They can help to judge the importance
of a perspective in the KG. Edges with relatively high value of normalized degree(e)
may reflect major characteristics of the KG, but users are not force to accept the
recommended perspectives, they can switch perspectives to meet their needs. After
the perspective is chosen, the multilevel completeness/specificity strategy can be used.

The multiperspective strategy aims at satisfying various user needs from multi-
ple perspectives. Based on different perspectives, even using the same method to
rank nodes for reasoning (e.g., in this report, we use node degree under a perspec-
tive (degree(n, P )) for the multilevel completeness strategy), the organization of the
results are different.

5.8 A Case Study on the Semantic Dataset

In the context of the Semantic Web, an RDF file is composed of triple sets, and it
can be considered as a knowledge graph (KG). All the defined statistical parameters
for the knowledge graph can be used on the RDF graph. In this section, we provide
some illustrative examples of the granular reasoning strategies discussed above. All
the examples are developed based on the SwetoDBLP dataset [3].

5.8.1 Multilevel Completeness Strategy

Variable completeness reasoning on the Semantic Web provides reasoning results in
multiple levels of completeness under time constraints. A perspective (P ) need to
be chosen and the nodes in the RDF graph for reasoning will be ordered according
to degree(n, P ). As an illustrative example, we take the reasoning task “Who are
authors in Artificial Intelligence (AI)?” based on the SwetoDBLP dataset. For the
most simple case, following rule can be applied for reasoning to find relevant authors:

haspaper(X, Y ), contains(Y,“Artificial Intelligence”) → author(X,“AI”)

where haspaper(X,Y ) denotes that the authorX has a paper titled Y . contains(Y, “Ar-
tificial Intelligence”) denotes that the title Y contains the term “Artificial Intelligence”.
author(X,“AI”) denotes that the author X is an author in the field of AI. Since the
SwetoDBLP contains too many publications (More than 1,200,000), doing reasoning
based on a dataset like this may require an unacceptable period of time, it is better
that more important authors could be provided to the user first. Here we assume a
starting point that indicate using coauthor number as the chosen perspective (denoted
as Pcn). Under this perspective, the authors with more coauthors, namely, has a higher
value of degree(n, Pcn), are more important. In order to illustrate the levels of com-
pleteness, we randomly choose some degree(n, Pcn) to stop the reasoning process, as
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shown in Table 5.1. The reasoning process will start from the nodes with the biggest
value of degree(n, Pcn), reduce the value gradually as time passed by, and will stop
at the chosen degree(n, Pcn) for user judges. In order to meet users’ specific needs on
the levels of completeness value, using the proposed completeness prediction method
introduced above, the prediction value has also been provided in Figure 5.1. This pre-
diction value serves as a reference for users to judge whether they are satisfied. If more
time is allowed and the user has not been satisfied yet, more nodes are involved, one
can get reasoning results with higher levels of completeness. In this way, we provide
solutions for the various user needs.

degree(n, Pcn) Satisfied AI
value to stop authors authors

70 2885 151
30 17121 579
11 78868 1142
4 277417 1704
1 575447 2225
0 615124 2355

Table 5.1: Unifying search and
reasoning with multilevel com-
pleteness and anytime behavior.

Figure 5.1: Comparison of predicted
and actual completeness value.

5.8.2 Starting Point Strategy

We continue the discussion of the above example for the multilevel completeness strat-
egy, and give an example using strategy 1 for the starting point strategy. Notice that
this example is a synergy of the multilevel completeness strategy and the starting point
strategy.

Following the same reasoning task in the above sections, “John McCarthy”, is
taken as a concrete user name in a SP , and his coauthors6 whom he definitely knows
(with * after the names) are ranked into the top ones in every level of the “Artificial
Intelligence” author lists when the user tries to stop while an arbitrary degree(n, Pcn)
of the relevant nodes has been involved (Since the coauthors are all persons whom
the author should know. These information helps users get more convenient reasoning
results.). Some partial output in some levels is shown in Table 5.2. The strategy of
multilevel specificity and starting point can also be integrated together, which provide
reasoning results based on starting point in every level of specificity to produce a more
user-preferred form of results.

5.8.3 Multilevel Specificity Strategy

In the multilevel specificity strategy, if the user has very limited time, we may just
use the input keywords as reasoning constraints and do not move to more specific or
general levels. As an illustrative example, we use the same reasoning task in the upper

6In this study, we represent the coauthor information for each author in an RDF file using the
FOAF vocabulary “foaf:knows”. The coauthor network RDF dataset created based on the SwetoD-
BLP dataset can be acquired from http://www.iwici.org/dblp-sse. One can utilize this dataset to
create a starting point for refining the reasoning process.
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Table 5.2: A comparative study of the multilevel completeness strategy without and
with a starting point. (User name: John McCarthy)

Completeness Authors (coauthor numbers) Authors (coauthor numbers)
without a starting point with a starting point
Carl Kesselman (312) Hans W. Guesgen (117) *

Level 1 Thomas S. Huang (271) Carl Kesselman (312)
Edward A. Fox (269) Thomas S. Huang (271)

degree(n, Pcn) Lei Wang (250) Edward A. Fox (269)
≥ 70 John Mylopoulos (245) Lei Wang (250)

Ewa Deelman (237) John Mylopoulos (245)
... ...

Claudio Moraga (69) Virginia Dignum (69) *
Level 2 Virginia Dignum (69) John McCarthy (65) *

Ralph Grishman (69) Aaron Sloman (36) *
degree(n, Pcn) Biplav Srivastava (69) Claudio Moraga (69)
∈ [30, 70) Ralph M. Weischedel (69) Ralph Grishman (69)

Andrew Lim (69) Biplav Srivastava (69)
... ...

... ... ...

section. For the very general level, the reasoning system will just provide authors
whose paper titles contain “Artificial Intelligence”, and the reasoning result is 2355
persons (It seems not too many, which is not reasonable.). Since in many cases, the
authors in the field of AI do not write papers whose titles include the exact term “Ar-
tificial Intelligence”, they may mention more specific terms such as “Agent”, “Machine
Learning”, etc. If more time is given, answers with a finer level of specificity according
to a hierarchical domain ontology of “Artificial Intelligence” can be provided. Based
on all the AI related conferences section and subsection names in the DBLP, we create
a “three-level Artificial Intelligence ontology” automatically (This ontology has a hier-
archical structure representing “Artificial Intelligence” related topics. Topic relations
among levels are represented with “rdfs:subClassOf”), and we utilize this ontology to
demonstrate the unification of search and reasoning with multilevel specificity7.

The rule for this reasoning task is:

hasResttime, haspaper(X, Y ), contains(Y,H), topics(H,“AI”) → author(X,“AI”)

where hasResttime is a dynamic predicate which denotes whether there is some rest
time for the reasoning task8, topics(H, “AI”) denotes that H is a related sub topic
from the hierarchical ontology of AI. If the user allows more time, based on the
“rdfs:subClassOf” relation, the subtopics of AI in Level 2 of the ontology will be
used as H for reasoning to find more authors in the field of AI. Further, if the user

7Here we ignore the soundness of this ontology, which is not the focus of this paper (Supporting
materials on how we build the ontology can be found from : http://www.iwici.org/user-g.). One can
choose other similar ontologies instead.

8For implementation, logic programming languages such as Prolog does not allow a dynamic
predicate like hasResttime. But we can consider resttime(T ) as a counter which would return a
number. Then, we can check the number to know whether there is any rest time left. Namely:
resttime(T ), T > 0 → hasResttime.
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Table 5.3: Answers to “Who are the authors in Artificial Intelligence?” in multi-
ple levels of specificity according to the hierarchical knowledge structure of Artificial
Intelligence.

Specificity Relevant keywords Number of authors

Level 1 Artificial Intelligence 2355
Level 2 Agents 9157

Automated Reasoning 222
Cognition 19775

Constraints 8744
Games 3817

Knowledge Representation 1537
Natural Language 2939

Robot 16425
... ...

Level 3 Analogy 374
Case-Based Reasoning 1133
Cognitive Modeling 76

Decision Trees 1112
Proof Planning 45

Search 32079
Translation 4414

Web Intelligence 122
... ...

Table 5.4: A comparative study on the answers in different levels of specificity.

Specificity Number of authors Completeness
Level 1 2355 0.85%

Level 1,2 207468 75.11%
Level 1,2,3 276205 100%

wants to get results finer than Level 2, then the subtopics in Level 3 are used as H
to produce an even more complete result list. As shown in Tables 5.3 and 5.4, based
on the hierarchy of Artificial Intelligence, Since Levels 2 and 3 contain more specific
sub branches, it is not surprising that one can get more authors when deeper levels
of terms are considered, hence, the completeness of the reasoning result also goes to
higher levels, as shown in Table 5.4.

5.8.4 Multiperspective Strategy

For simplification, here we consider the situation that a perspective is a singleton
(P = {e}). As mentioned in section 5.7, we choose P by the normalized edge degree
(normalized degree(e)). Figure 5.2 shows the distribution of normalized degree(e).
According to this figure, we find that among the edges who hold relatively big normalized
degree(e), “rdf:Seq” and “rdfs:label” are very meaningful (“rdf:Seq” can be used to

find coauthor numbers, and “rdfs:label” can be used to find publication numbers for
each author). Hence, we analyze the distribution of the node degrees under the per-

36 of 64



FP7 – 215535

Deliverable 4.3.1

spective of coauthor numbers (Pcn) and publication numbers (Ppn). Firstly, We choose
the perspective of the number of coauthors. From this perspective, we find following
characteristics of the SwetoDBLP dataset: Coauthor number distribution is shown
as in Figure 5.3. In the left side of Figure 5.4, there is a peak value in the distri-
bution, and it does not appear at the point of 0 or 1 coauthor number (as shown in
Figure 5.5). Hence, the shape of the distribution is very much like a log-normal dis-
tribution. These phenomena are not special cases that just happen to all the authors,
we also observed the same phenomenon for authors in many sub-fields in computer
science, such as Artificial Intelligence (as shown in Figure 5.6, Software Engineering,
Data Mining, Machine Learning, the World Wide Web, Quantum Computing, etc. As
a comparison of the coauthor number view, we provide some partial results from the
view point of publication number. We observe that, different from the perspective of
coauthor number distribution, the publication number distribution follows very much
like a power law distribution, without a peak value in the middle of the distribution
curve, as shown in Figures 5.7 and 5.8.

Figure 5.2: Normalized edge degree distribution in the SwetoDBLP RDF dataset.

Table 5.5: A partial result of the variable specificity reasoning task “The list of authors
in Artificial Intelligence” in level 1 from two perspectives.

Publication number perspective Coauthor number perspective
Thomas S. Huang (387) Carl Kesselman (312)
John Mylopoulos (261) Thomas S. Huang (271)
Hsinchun Chen (260) Edward A. Fox (269)
Henri Prade (252) Lei Wang (250)

Didier Dubois (241) John Mylopoulos (245)
Thomas Eiter (219) Ewa Deelman (237)

... ...

Table 5.5 provides a partial result for the experiment in variable specificity reason-
ing introduced in Section 5.8.3 from two perspectives (namely, publication number and
coauthor number). As shown in Figure 5.4, Figure 5.8, and Table 5.5, it is clear that
since the distribution of node degree under the above two perspectives are different,
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Figure 5.3: Coauthor number distribu-
tion in the SwetoDBLP dataset.

Figure 5.4: log-log diagram of Fig-
ure 5.3.

Figure 5.5: A zoomed in version of Fig-
ure 5.3.

Figure 5.6: A zoomed in version of
coauthor distribution for “Artificial In-
telligence”.

Figure 5.7: Publication number distri-
bution in the SwetoDBLP dataset.

Figure 5.8: log-log diagram of Fig-
ure 5.7.

and for the same node, the node degree under these two perspectives are different, we
can conclude that using different perspectives, both of the sequence of nodes provided
for reasoning and the reasoning results are organized differently. In this way, various
user needs can be satisfied.
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5.9 Related Work

The study of unifying reasoning and search at Web scale [12] is the framework that
this chapter is based on. The strategies introduced in this chapter aim at providing
some possible solutions for how the unification can be done in a more user-oriented
way from the viewpoint of granularity. They are developed based on many existing
studies. Here we introduce some major related areas, namely, variable precision logic
and previous studies on reasoning with granularity.

Variable precision logic is a major method for reasoning under time constraints,
which provides two reasoning strategies, namely, variable certainty and variable speci-
ficity reasoning [27]. Concerning time constraint, given more time, a system with
variable specificity can provide a more specific answer, while a system with variable
certainty can provide a more certain answer [27]. Some strategies on unifying search
and reasoning introduced in this chapter, for example, the multilevel specificity strat-
egy is inspired by variable specificity reasoning. The major difference is that: variable
specificity reasoning uses “if-then-unless” rule, while multilevel specificity strategy uses
hierarchical knowledge structure to supervise the unification process of search and rea-
soning. In this document, we did not investigate on the idea of variable certainty. Since
it belongs to non-monotonic reasoning, and the certainty won’t necessarily go higher
as more data is involved (since there might be contradictions [1] or inconsistency [21]
on the facts, especially in the dynamic changing context of the Web). How it can be
applied to a more user-centric environment still needs further investigations.

The study of reasoning with granularity starts from the logic approaches for gran-
ular computing [14, 26, 51], etc. Under the term of granular reasoning, it has also
been studied from the perspectives of propositional reasoning [29], Aristotle’s cate-
gorial syllogism [30], and granular space [44]. These studies concentrate on the logic
foundations for reasoning under multi-granularity (mainly on zoom-in and zoom-out).
In this chapter, our focus is on how to unify the search and reasoning process from
the viewpoint of granularity, namely, how to search for a good subset of the original
dataset, and do reasoning on the selected dataset based on the idea of granularity.
Besides the inspiration from granular computing [47, 49], especially granular struc-
tures [47]. The strategies proposed in this chapter are also inspired from Cognitive
Psychology studies on human problem solving (e.g. starting point) [32, 41]. Further,
we concentrate on how granularity related strategies can help to effectively solve Web
scale reasoning problems according to different user context and time constraints.

We also need to point out that although the strategies introduced in this chapter
are inspired by some basic strategies in granular computing, the granular structures,
more specifically granular knowledge structures that are mentioned in this chapter are
different from previous studies [47, 48]. In granular computing, granules are organized
hierarchically from larger grain sizes to smaller ones (or the other way around), and
the granules in coarser levels contain the ones in finer levels. In this study, although
granules are still in a hierarchy, the granules does not contain each other. In the mul-
tilevel completeness strategy, granules are organized into different levels by the node
degree under a perspective, granules with higher value of degree(n, P ) do not contain
those with lower values. In the multilevel specificity strategy, although the hierarchi-
cal knowledge structures of Artificial Intelligence has a typical granular structure (All
the subtopics are covered under the terms one level coarser than them.), the granular
structure of the reasoning results based on this hierarchy is different from the granular
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structures studied previously [47, 48], since the results which were got from the coarser
levels cannot cover finer levels (The reason is that if the user does not have enough
time, nodes in finer levels, such as authors of “Decision Trees”, will not be selected for
the reasoning task whether they are AI authors.).

The idea of network analysis has been introduced from Network Science to the
Semantic Web [39, 18, 23], ranging from Social Network analysis [39, 23] to Ontol-
ogy structure analysis [18] and Ontology partition [37]. Anytime Reasoning has been
studied from the perspective of approaches [24, 40, 31], evaluation (in terms of com-
pleteness and soundness) [16, 17], and applications [2]. nevertheless, there are not
much study that touch the prediction of completeness when the reasoning process is
stopped, which will be very useful for users to judge whether they are satisfied or not.
In our study, we develop network statistical degree distribution analysis considering
the semantics of the edges, and based on this analysis, we provide a concrete type of
anytime reasoning method as well as a simple completeness prediction method.

5.10 Conclusion and Future Work

As an approach for incomplete reasoning at Web scale, unifying search and reasoning
from the viewpoint of granularity provides some strategies which aim at removing the
diversity and scalability barriers for Web reasoning.

For the diversity issue: The strategy of starting point focuses on user specific
background and the unification process is familiarity driven or novelty driven, and
is obviously user oriented. Multilevel completeness strategy is with anytime behav-
ior [40], and provides predictions of completeness for user judges when the user interact
with the system. Multilevel specificity strategy emphasizes on reasoning with multiple
levels of specificity and users can choose whether to go into more specific or more
general levels. Multiperspective strategy attempts to meet various user needs from
multiple perspectives.

For the scalability issue: In the multilevel completeness strategy, although
the partial results may have low completeness, more important results have been
searched out and ranked to the top ones for reasoning based on their higher values
of degree(n, P ). In other words, more important results are provided as a possible
way to solve the scalability problems. The starting point strategy also provides two
methods to select important nodes for reasoning. The multilevel specificity strategy
concentrates on the appropriate levels of specificity controlled by the knowledge hier-
archy and does not get into unnecessary levels of data. Hence, under limited time, the
reasoning task and time is reduced.

Here we provide a preliminary discussion on the relationship of granularity and
centrality. In this chapter, we use granularity (for example, in the multilevel speci-
ficity strategy) to supervise the hierarchical search and reasoning process, and we use
normalized node degree under a perspective normalized degree(n, P ) to select the
nodes (and organize them as different granules) for reasoning in the multilevel com-
pleteness strategy. Actually, these two concepts are highly related but totally different.
The related part for these two concepts is that normalized degree(n, P ) can be con-
sidered as a simplified model for calculating centrality. Hence, in other words, here
we use centrality to produce granules in different granularity (Nodes with different
normalized degree(n, P ) are organized as granules with different granularity.). The
different part for these two concepts is that a node with coarser granularity is not
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necessarily have high centrality. For example, suppose there is a node A that is a
super class of only one direct connected node B, hence, B is with low centrality. But
if the direct connected node B is super class of many other nodes, by reasoning, we
can conclude that A is a super class of these nodes. Hence, A is with coarser granu-
larity, and more extra links have been produced for A. In this way, we can find that
through reasoning, more implicit relationship can be found, and a node with lower
centrality explicitly, may has higher centrality implicitly. More deeper discussions and
related experiments (currently, the WordNet dataset is considered since it contains
many hierarchical relations) is planned for future work to find deeper relationships of
these two concepts which are considered to be two approaches to solve the scalability
barriers for Web-scale reasoning.

Since user needs are very related to the satisfaction of reasoning results, in future
studies, we would provide a comparison from the user perspective on the effects of
multiple strategies mentioned in this chapter. We would also like to investigate in
great details on how these strategies can be combined together to produce better
solutions. Since normalized degree(n, P ) is used to rank nodes for reasoning, by
Proposition 1 (4), it is clear that for each node, normalized degree(n, P ) is not hard
to get from several knowledge graphs if they come from multiple sources. In order
to solve the scalability problem, it is also possible to parallelize the calculation of
normalized degree(n, P ) based on multiple knowledge graphs, and we are going to
investigate on this problem in our future study9. Since the unification of Web scale
search and reasoning from the viewpoint of granularity brings many human problem
solving strategies to Web reasoning, it can be considered as an effort towards Web
intelligence [50].

9Further investigations can be tracked through the USeR-G (Unifying Search and Reasoning from
the viewpoint of Granularity) website http://www.iwici.org/user-g
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6. Anytime Classification by Ontology Approximation

6.1 INTRODUCTION

Motivation Since the introduction of anytime algorithms in [6] it has become widely
accepted that they are attractive for many reasoning tasks in AI [52]. Instead of pro-
ducing the perfect answer after a long period of computation, they allow a reasoning
task to progress gradually, producing output of increasing quality as runtime pro-
gresses. This allows to produce meaningful output under time-pressure, and to save
time for applications where an approximate answer is already sufficient.

A recent set of reasoning challenges has been posed to AI by Semantic Web appli-
cations. These applications typically use very large or complex ontologies for purposes
of searching information on the Web, personalising Web sites, matchmaking between
web-services, etc. They rely on subsumption reasoning in languages based on De-
scription Logics [15]. Many of these Semantic Web applications are performed under
time pressure (e.g. because of user-interaction), and often approximate answers are
sufficient. Given the incomplete and noisy nature of the data on the Web, many
user-queries do not require exact and complete answers

This raises the question whether we can develop an anytime algorithm for subsumption-
based classification.
Approach: The basic intuition of our approach will be to select a subset of the vo-
cabulary of an ontology, to perform classification only with this limited vocabulary,
and to gradually increase the selected vocabulary during the runtime of the algorithm.
This will yield an anytime algorithm that produces sound but incomplete results for
classifying a given ontology, with increasing completeness as the algorithm progresses.
A key ingredient of this approach is the strategy to select the subset of the vocabulary.
We will empirically investigate the behaviour of a number of different strategies.
Related work: The basic intuition of selecting a subset of the vocabulary can be
formalised in terms of approximate deduction, given in [35]. This foundation has been
used in earlier work on approximate subsumption by [13] and [38], and in fact we will
apply a rewrite procedure defined in [38]. The essential difference with our approach
is that in [13, 38] the approximation is used to reformulate the queries, whereas we
use it to approximate the ontology. The results in [13] are mostly negative, while [38]
does not report any empirical results. Our experiments show that approximating the
ontology produces much better anytime behaviour then the results on approximating
the query reported.
Experiment and main findings: The main parameter determining the anytime
behaviour of our algorithm is the strategy used to select the increasing subset of the
vocabulary used in the classification. In our experiments we will measure the perfor-
mance of four different selection strategies on eight ontologies which have been chosen
to cover a range of size and complexity. The performance of the strategies is measured
in terms of the recall obtained vs. the runtime required on increasing subsets of the
ontology vocabulary.

Our experiments will show that some approximation strategies do indeed give good
anytime behaviour, i.e. for a small percentage of the run-time, we already obtain a
large percentage of the answers. Most interestingly, it will turn out that anytime
classification works best where it is most needed: on ontologies where classical sub-
sumption is hardest to compute.
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Contributions and structure of this chapter: The main contributions of this
research are (a) formal definitions of a sound and incomplete form of terminological
reasoning based on vocabulary selection (based on [38], section 6.2) (b) an algorithm
and heuristics for anytime behaviour for approximation classification reasoning (also
section 6.2) (c) experiments that show attractive performance profiles for our approach,
and that investigate which factors influence the anytime behaviour (sections 6.3 and
6.4).

6.2 A SOUND APPROXIMATION FOR CLASSIFICATION

In this section we will define a sound and incomplete approximation for terminological
reasoning. This will then be the basis for an anytime classification algorithm.

Our definitions will be based on the usual syntax and semantics for the ALC
description logic. An ontology is a set of ALC axioms of the form Ai v Bi, with Ai

and Bi built from atomic concepts, conjunction, disjunction, negation, and universally
and existentially quantified role expressions. See [4] for details.

The basic intuition of our approximation is that if we rewrite an ALC theory T to a
weaker theory T ′, then establishing T ′ |= C v D is sufficient to establish T |= C v D
(but not vice versa). In other words, entailment under T ′ is a sound (but incomplete)
approximation of entailment under T .

We will now define a rewrite procedure that we will apply to every axiom Ai v Bi

of T in order to obtain T ′. Following the ideas of Cadoli & Schaerf [35] we define an
approximation set S, consisting of a subset of the atoms from T . The rewrite procedure
will restrict the vocabulary of T only to atoms that appear in S. The rewrite procedure
constructs a lower approximation (.)S− by replacing atoms not in S with ⊥, and an
upper approximation (.)S+ by replacing atoms not in S with >:

Definition 1 (Rewrite Procedure [38])
The rewrite procedures (·)S, (·)S+ and (·)S−

are defined as follows:

(A v B)S =AS− v BS+

AS− =A if A ∈ S AS+ =A if A ∈ S
AS− =⊥ if A 6∈ S AS+ => if A 6∈ S
(¬C)S− =¬CS+ (¬C)S+ =¬CS−

(C uD)S−=CS− uDS− (C uD)S+=CS+ uDS+

(C tD)S−=CS− tDS− (C tD)S+=CS+ tDS+

(∃R.C)S− =∃R.CS− (∃R.C)S+ =∃R.CS+

(∀R.C)S− =∀R.CS− (∀R.C)S+ =∀R.CS+

It is easy to see that both (·)+S
and (·)−S

terminate on any concept C in ALC as the
complexity of the formula decreases in any application of the rules1.

The theory T S is obtained by applying this rewrite procedure to every axiom in
T . This rewrite procedure equals the one proposed in [38]. However the essential
difference is that in [38] this procedure is applied to approximate the queries (i.e.
T |= φS), whereas we use it to approximate the ontology (i.e. T S |= φ).

1The rewrite procedure can be trivially extended to concept abstraction in OWL DL
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The following property is crucial to establish that T S is a sound approximation of
T :

Theorem 1 (From [38])
For any formula Ai v Bi: if Ai v Bi then Ai

S− v Bi
S+.

The intuition behind this is that Ai
S− v Ai, (since the atoms in Ai not listed in S

have been replaced by ⊥), and Bi v Bi
S+ (since the atoms in Bi not listed in S have

been replaced by >). The full proof of this is given in [36]. From this the following is
immediate:

Corrolary 1 (Soundness) If T S |= C v D then T |= C v D

It is also easy to see that if S = ∅, T S is reduced to the empty (trivial) theory, entailing
only tautologies. Similarly, if S contains all atoms from T then the rewrite operation
is the identity, and the consequences of T S equal those of T . In general, if S grows,
the entailments from T S become more complete:

Theorem 2 (Monotonicity) If S1 ⊆ S2 then
T S1 |= C v D entails T S2 |= C v D.

This is because any model for T S2 is necessarily also a model for T S1 . A full proof is
given in [36].

Anytime classification algorithm: We can now obtain an anytime algorithm for
classifying T by starting out with classifying T S for an initial (typically small) set
S. We then increase S and repeat the procedure until either (a) the quality of the
classification is sufficient for our purposes, or (b) we run out of available computing
time, or (c) S contains all atoms from T .

Theorem 2 guarantees that the output of this algorithm monotonically improves
during the iteration, as is typically required of anytime algorithms [52]

We illustrate all this with a small example.

Example 1 Let T = {A v B u C,B v D}.
If we take as successive values

S = ∅, {B}, {A,B}, {A,B,D}, {A,B,C,D},
then the rewriting procedure produces approximate theories T S as follows:

T ∅ = {⊥ v > u>,⊥ v >}
T {B} = {⊥ v B u >, B v >}
T {A,B} = {A v B u >, B v >}
T {A,B,D} = {A v B u >, B v D}
T {A,B,C,D} = T

To show that the theories T S for increasing S are a sequence of sound and increas-
ingly less incomplete approximations for T , we list all their atomic non-tautological
entailments.

T ∅ : ∅
T {B} : ∅
T {A,B} : {A v B}
T {A,B,D} : {A v B,A v D,B v D}
T {A,B,C,D} : {A v B,A v D,B v D,A v C}
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Figure 6.1: anytime performance profile from examples 1 and 2

This example illustrates that for small values of S, T S is a very incomplete approxima-
tion of T ; with increasing S, T S becomes a less incomplete approximation; and when
S contains all atoms from T , T S is no longer an approximation, but simply equals T .

The anytime classification algorithm given above increases S in successive itera-
tions. The choice of how to increment S determines how quickly the approximation
approaches the classical result. This is shown in the following example:

Example 2 Let T be the same as in ex. 1, but now with the sequence

S = ∅, {D}, {C,D}, {A,C,D}{A,B,C,D}.

This yields the following set of atomic non-tautological entailments:

T ∅ : ∅
T {D} : ∅
T {C,D} : ∅
T {A,C,D} : {A v C,A v D}
T {A,B,C,D} : {A v C,A v D,A v B,B v D}

Figure 6.1 plots the anytime performance profiles for both approximation strategies.
For each size of S it plots the percentage of non-tautological atomic subsumptions
entailed by T S. The first strategy has a more attractive anytime behaviour then the
second, since it already obtains a higher degree of completeness for smaller values
of S. This shows that the strategy for choosing successive values of S is crucial in
determining the behaviour of the anytime algorithm.

6.3 EXPERIMENTAL SETUP

The example from the previous section illustrates that different approximation strate-
gies for the set S result in different anytime behaviours of the classification algorithm.
This raises the question on what would be a good approximation strategy. In this
section, we will define three different strategies and we will investigate their resulting
anytime behaviour on a number of realistic datasets.

45 of 64



FP7 – 215535

Deliverable 4.3.1

6.3.1 Approximation Strategies

In our experimentation, we tested eight selection functions, namely:

• RANDOM: select concept-names in a random order. This strategy is included
as a baseline measurement.

• MORE, LESS: select the most or least often occurring concept-name first. The
intuition behind MORE is that by choosing the most frequently occurring con-
cept names first we can quickly get a “general” view of the overall classification
hierarchy, which can then be successively refined by using less frequently occur-
ring symbols in later iterations. To test this hypothesis, we compare MORE
with the exact opposite strategy (LESS).

• BOTTOM, TOP, MIDDLE: BOTTOM selects the most specific and TOP the
most general concepts first. Of course, in general we do not precisely know which
concepts are most specific or most general, since that is exactly what we want
to compute through classification). One would instead need a heuristic oracle
that is able to order concepts based on their heuristically expected generality. In
our experiments, we use the actual classification of the ontologies as the perfect
version of such an oracle, allowing us to test the perfect version of these selection
functions.

• MAXLABEL, MINLABEL: select concept names with the longest or shortest
concept-label first. The intuition behind these selection functions is that they
are an implementation of the BOTTOM and TOP heuristics: more specific
concepts can be expected to have longer descriptive labels.

6.3.2 Datasets

For our experiments we used the following well known ontologies: DICE, a medical
terminology used for registering diagnoses in Intensive Care units2; MGED3, an on-
tology for microarray experiments; UNSPSC4, an ontology version of a coding system
to classify products and services; FMA5, the foundational model of anatomy; and the
pizza ontology6, used as training example for the OWL language. We also used three
ontologies (Kpoly5, Kt4p13 and Kphp5) taken from the DL benchmark7.

Because of technical limitations, all ontologies were simplified from their original
OWL versions into corresponding ALC versions. Consequently, our experiments only
give insight into the approximation properties of ALC ontologies. The majority of
practical OWL ontologies do not go much beyond ALC, and running experiments on
OWL DL ontologies is planned for future work.

Table 6.2 summarises some properties of these ontologies: the number of axioms,
their respective classification time8, as well as the number of occurrences of operators.

This table shows that we have chosen a dataset of realistic ontologies of different
size (ranging from hundreds of axioms to tens of thousands of axioms), of different

2kik.amc.uva.nl/dice/home.jsp
3mged.sourceforge.net/ontologies/index.php
4www.unspsc.org
5sig.biostr.washington.edu/projects/fm
6www.co-ode.org/ontologies/pizza
7dl.kr.org/dl98/comparison/data.html
8using RACER Version 1.7.24
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secs. #Axioms secs/kAx #∀ #∃ #u #t #¬
DICE 60 4859 12.3 3734 5606 1951 784 0
MGED 0.2 792 0.3 0 171 12 5 12
UNSPSC 7 19590 0.4 0 0 0 0 0
FMA 50 3824 13.1 9348 17280 2654 2527 0
PIZZA 0.2 1052 0.2 23 148 796 26 796
Kpoly5 4 317 12.6 0 202 114 0 163
Kt4p13 5 410 12.2 0 289 120 0 224
Kphp5 8 242 33.1 0 62 179 0 213

Figure 6.2: Some properties of the ontologies used in our experiments

logical expressivity (with very different use of the logical connectives), and of different
cost (with classification times ranging from tenths of seconds to tens of seconds).

Notice that classification time does not depend only on the number of axioms, but
is also greatly determined by the logical complexity of the ontology: DICE has 4 times
fewer axioms then UNSPSC, but requires an order of magnitude more classification
time. This is caused by the differences in logical expressivity. We use the ratio of
secs/axioms as a rough measure of the complexity of an ontology (scaled to seconds
per 1000 axioms for readability).

6.3.3 Performance Measure

Quality Measure: To study the effect of our approximation method, and of the
choice of the approximation set, we need an appropriate performance measure. Since
our algorithm is a sound but incomplete approximation we need to somehow measure
the “degree of completeness” of an answer9. As in the examples 1 and 2 from section
6.2 we will use the number of entailed atomic subsumption relationsand take this as a
percentage of the number of atomic subsumptions entailed classically. 10

Intuitively, this measures the percentage of atomic subsumption queries that can
be answered correctly using the approximated ontology.

The advantage of this performance metric is that it puts a small penalty on mis-
takes in the details lower down in the ontology, and a high penalty on mistakes in the
important top-level categorisations. Subsumptions higher in the hierarchy are consid-
ered more important, since they are involved in entailing more pairwise subsumptions
(because of the tree-structure of most ontologies). This is illustrated in the following
toy example:

Example 3

9Following standard accepted terminology, we will use the shorter term “recall” for “degree of
completeness”. Notice that since our approximation is only incomplete, but always sound (theorem
1), our precision will always be 100% and need not be measured.

10From here on, we include tautological atomic entailments in our recall measure. This constant
factor (the two entailments ⊥ v A and A v > for every atom A ∈ S) will not influence our
measurements in an essential way.
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Figure 6.3: Results for the MORE strategy on the DICE ontology
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Both Approximation 1 and Approximation 2 miss to compute a single link in the hi-
erarchy. However, because the missing link in Approximation 2 is higher in the hi-
erarchy, the recall of Approximation 2, measured by the number of entailed atomic
subsumption is lower: Classically, the following 6 atomic subsumption are entailed:
B v A,C v A,D v A,E v A,D v C,E v C. All of these are also entailed by Ap-
proximation 1, with the exception of E v C and E v A, giving a recall of 4/6=66%.
Approximation 2 however only entails 3 atomic subsumptions (B v A,D v C,E v C).
giving a recall of only 3/6=50%, showing that a single missing subsumption higher in
the hierarchy leads to a lower recall then a single missing subsumption lower in the
hierarchy.

Cost Measure: As our cost measure, we will simply take the run-time of the ap-
proximate classification task, taken as a percentage of the computation time of the
classical algorithm.
Performance Measure: As overall performance measure we will take the difference
between the quality measure (“gain”) and cost measure (“pain”). These will be plot-
ted in a “pain/gain diagram” as a function of the increasing size of the approximation
set S (again taken as percentage of the total vocabulary of T ).

Figure 6.3 illustrates these measures11: as the size of S increases along the x-axis
from 0-100%12, both the recall (gain) and the runtime (pain) also increase from 0-100%,

11In fact, this figure plots the curves for one of the experiments to be discussed in section 6.4,
namely running the MORE strategy on the DICE ontology

12In all our experiments we used fixed increments of S with 10%. This somewhat arbitrary step-size
is a pragmatic trade-off between the resolution of our plots and the costs of running the experiments
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plotted on the y-axis. The combined performance measure (gain-curve) is calculated
as the difference between these two.

The ideal recall curve rises sharply at small values of S (convex), while the ideal
runtime curve only starts to increase significantly at large values of S (concave). To-
gether, these would produce an ideal gain curve that rises sharply at small values of S
representing the desired outcome of a high recall and low runtime in the early stages
of the algorithms.

Although such a convex gain-curve is the most ideal, even a flat gain curve at
y = 0 is already attractive, because it indicates that the gains grow proportionally
with costs, giving still an attractive anytime behaviour.

In figure 6.3 the recall-function is everywhere above the runtime-function hence
there is a positive gain everywhere. If the anytime algorithm would cost more relative
runtime than it would yield in relative recall, the gain curve would falls below the
y = 0 mark, indicating that the pain is greater than the gain, resulting in negative
gains.

Notice that gain-curves always start in (0,0), since for the empty vocabulary both
runtime and recall are 0, hence their difference is 0. Gain curves always ends in
(100,0), since for the complete vocabulary both recall and runtime are 100%, hence
their difference is again 0.

In our plots, the runtimes are not summed over all previous value for S. Therefore,
the gain curve is not a performance profile of an interruptible algorithm, but shows
the optimal point for a contract-algorithm (namely the value of S where the gain is
maximal). However, [33] has shown that contract algorithms can be converted into
interruptible algorithms with a constant overhead of at most a factor 4. Since this is
constant factor, this difference can be ignored

Since the gain curve of a strategy summarises how successful the strategy is in
obtaining attractive anytime behaviour, we will report the full set of experiments
showing only the gain curves for every strategy, and not the separate recall and runtime
curves.

6.4 EXPERIMENTAL RESULTS

In this section, we will investigate (1) in which cases anytime classification is effective,
and (2) which of our strategies is most effective.

Figure 6.4 summarises the results of our experiments: for each ontology it indicates
how attractive the anytime behaviour is under the various strategies. The amounts of
+’s summarise the length of the interval where the gain curve is positive and how high
this value is. The full gain curves for all experiments can be found in the appendix.
From these results we can observe the following:
Anytime classification benefits some cases: The plots in the appendix show a
number of cases with very attractive anytime behaviour: on FMA, all strategies have
an always-positive gain curve. This confirms our hope that anytime classification is a
useful reasoning method for large and complex ontologies. Other examples are Kphp5,
where again all strategies have positive gains everywhere; kt4p13, where all strategies
except LESS have positive gains; and kpoly5 where again all strategies have positive
gains everywhere, although the gains are smaller. Less positive but still attractive is
the behaviour on DICE, where all strategies are positive up to the 90% point. Even
strategies that score around the 0 gain mark (e.g. most of the other strategies on
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ontology secs/ax R M L B C T MAX MIN

Kphp5 33.1 + + +++ +++ + + + +
FMA 13.1 + + + +++ + + + +

Kpoly5 12.6 +++ + + +++ + + + +
DICE 12.3 + +++ + + + + + +

Kt4p13 12.2 + +++ – – – – – + – – – +
UNSPSC 0.4 – – – – – – – – – – – – – – – – – – – – –
MGED 0.3 – – – – – – – – – – – – – – – – – – – –
PIZZA 0.2 – – – – – – – – – – – – – – – – – – – – –
R= RANDOM, M= MORE, L= LESS, B=BOTTOM, C=CENTER, T=TOP,

MAX=MAXLABEL, MIN=MINLABEL

Figure 6.4: Summary of success and failure of the different strategies.

FMA) are still attractive because this means that the recall growths proportionally
with the runtime while increasing S, hence still giving a nice anytime behaviour.
Anytime classification doesn’t benefit all cases: However, we also see cases with
less attractive anytime behaviour. On UNSPSC and MGED all strategies have neg-
ative gains everywhere. This means that more time is lost than correct answers are
found.
When does anytime classification benefit? Figure 6.4 is sorted by the classification-
complexity of the ontologies (as rated by their secs/axiom score, see figure 6.2). From
this it is immediately apparent that approximate classification has most success on
complex ontologies. This is of course very good news: Approximate classification
works best in exactly those cases when it is needed most, namely for those ontologies
that are expensive to classify with classical algorithms.
Which strategy performs best? Our data is inconclusive on the question which
strategy performs best. Figure 6.4 shows weak evidence to suggest that the MORE
and BOTTOM strategies perform best, although each of them is outperformed by
others on some of the ontologies. Furthermore, it is noticable that these two winning
strategies are somehow complementary, performing best on different cases. Finally,
even though MAXLABEL and MINLABEL were introduced as heuristic estimates for
the TOP and BOTTOM strategies respectively, figure 6.4 shows almost no correlation
between these, suggesting that label-length is not a good estimator of concept speci-
ficity.
Contract algorithms vs. interruptible algorithms. An important distiction be-
tween different types of anytime algorithms is that between contract and interruptible
algorithms [52]. Interruptible algorithms are anytime because they can be interrupted
at any point during their execution, at which point they give the best answer available
at the time. Contract algorithms instead must be given in advance what their max-
imal allowed resources areis, and then aim to compute the best possible result with
those available resources.

If we regard our iterative algorithm as an interruptible algorithm, the performance
must be measured against the cumulated values of the runtimes of all iterations over
increasing S before the interrupt. If we aim for a contract algorithm, it is sufficient
to set an appropriate size for S at the start of the algorithm, and measure only the
runtime of that single computation.

All the results above are based on non-cumulative runtimes, and hence are valid
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ontology MORE BOTTOM
TP recall max. TP recall max.

at TP runtime at TP runtime
Kphp5 90% 63% 137% 90% 85% 123%
FMA 60% 46% 336% 70% 82% 287%

Kpoly5 70% 45% 304% 90% 76% 148%
DICE 80% 80% 225% 80% 30% 211%

Kt4p13 80% 65% 263% 90% 6% 143%

Figure 6.5: Interruptible behaviour

for a contract algorithm. A contract algorithm can be trivially turned into an inter-
ruptible algorithm by simply iterating the contract algorithm for increasing sizes of
S, and simply accumulating the runtimes of all iterations. Of course, this only makes
sense up to the point where the accumulated iterative runtime begins to exceed the
classical runtime (at which point we would be better off with the classical algorithm,
giving us full recall at S=100%). We will use the term tipping point for the size of
S at which the accumulated iterative runtime starts to exceed the classical runtime.
The tipping point is the maximal S at which the iterated contract algorithm can be
used as an interruptible algorithm. Obviously, higher values for this tipping point are
more attractive. Besides knowing the size of S at which the tipping point occurs, one
would like to know the recall that can be achieved at this tipping point (this being
the maximal recall obtainable by a naive interruptible algorithm, since beyong this
tipping point, we would be better of running the classical algortithm just once). The
table of figure 6.5 shows for the various experiments the values of the tipping point
(as percentage of S), and the corresponing recall obtained at this tipping point. The
results in this table are again very encouraging: in general, the tipping point is reached
only at large sizes of S: 60% and upwards, with an average of 80%. This means that
for a considerable range of S, it is still useful to deploy the iterated contract algorithm
as an interruptible algorithm. Furthermore, at this tipping point, a reasonable recall
is already obtained: almost always upwards of 45%, with an average of 57%. (The
single exception to this is the very low tipping-point recall of the BOTTOM strategy
on Kt4p13, which is consistent with the corresponing entry in figure 6.4). The third
column for each strategy in figure 6.5 measures the costs of the “worst case” scenario:
comparing the total accumulated runtime of all iterations up to S = 100% against a
single run at S = 100% (= the runtime of the classical algorithm). Again, this shows
rather favourable numbers: even by applying the naive iterative algorithm up to the
worst case (i.e. when no intermediate interrupts justified the iterative computation),
the costs are never hight than a factor of ±3, with an average of a factor of 2.3.
Choice of the control parameter. The design of every anytime algorithm is char-
acterised by the choice of three parameters: the cost parameter (“pain”, in our case:
runtime), the benefit parameter (“gain”, in our case: recall), and a control parame-
ter which is used as the dial to set the trade-off between cost and gains. Zilberstein
[52] formulates two properties that should hold for the cost-benefit trade-off of every
anytime algorithm:

• monotonicity : benefits should increase monotonically with cost
• diminishing returns : early increases of cost should yield higher increases in ben-

efit then later increases.
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(a) (b) (c)

Figure 6.6:

Figure 6.6(a) shows these properties do indeed hold for all the “interesting cases”: our
two most promising strategies (MORE and BOTTOM) on the 5 complex ontologies
from the top half of figure 6.4) all display a nicely convex curve.

In many anytime settings, runtime is used as the cost parameter. However, in
a practical algorithm, one can often not control the runtime explicitly, but instead
another quantity (the control parameter) is used as a substitute measure for costs.
This control parameter must be chosen in such a way that (1) it can be explicitly
controlled in the algorithm, and (2) it reflects the actual runtime costs of the algorithm.
In our algorithm the set S plays the role of this control parameter, the intuition being
that runtime increases with S. The question is then whether the desired properties
of monotonicity and diminishing returns still hold for the relation between control-
parameter and gains (instead of the relation between cost parameter and gains, shown
in fig. 6.6(a)). Figure 6.6(b) shows that the relation S vs. recall is still monotonic (as
already guaranteed by theorem 1), but that it does not satisfy diminishing returns:
most of the curves are concave. Figure 6.6(c) gives us the explanation for this: it
shows that runtime does not grow linearly with S; in fact the runtime only starts to
increase at very high values of S.

This is actually an attractive property, since apparently recall already increases
even for low values of S (fig. 6.6(b)), while runtime only starts to increase at high
values of S (fig. 6.6(c)). This behaviour suggests that our current linear iteration
over S (in steps of 10%) is not the optimal approach. Instead, we can use a gready
approach, where early iterations choose larger slices of S, for example an exponentially
decaying set of intervals of S: 50%, 75%, 87.5%, etc. This has two benefits: (1) recall
becomes higher in the earlier iterations, while figure 6.6(c) ensures us that costs will
still remain low; and (2) the steep jump in recall at high values of S shown in figure
6.6(b) is more equally spread out over multiple iterations. Together, these two effects
cause the graph to become convex, hence satisfying the requirement of diminishing
returns. We have experimentally confirmed these hypothesis.

6.5 CONCLUSIONS

In this chapter we have presented a method for approximate classification based on
selecting only part of the set of atoms in an ontology. By incrementally increasing
this set, we can construct an anytime classification algorithm, which yields sound and
increasingly complete answers w.r.t. classical reasoning.
Theorems and algorithm: We have given theorems that establish the soundness
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and monotonicity of the algorithm, and we have shown how a classical inference proce-
dure can be used to compute the approximate classification, by applying the classical
inference procedure to an approximated version of the ontology. The behaviour of this
algorithm is dependent on the strategy for selecting the subset of atoms taken into
account by the approximation.
Experiments: We have tested our anytime classification method with a rich set of
heuristics on a set of 8 realistic benchmark ontologies, comparing its performance
against classical reasoning in terms of runtime and recall (since the approximation is
sound, precision is always guaranteed).
Main Findings: Our experiments show that the algorithm is indeed a well-behaved
anytime algorithm with monotonic gains and diminishing returns. Furthermore, sig-
nificant gains can indeed be obtained. In many cases, the algorithm already achieves
a high recall against only a low runtime in its first few approximations. We have also
argued that the performance of our contract algorithm is still attractive when deployed
as an interruptible algorithm, even if this is done in the naive way. The approximation
works best on very complex ontologies, namely those that are expensive to classify
with traditional methods. This shows that our algorithm works best in the cases where
it is needed most.
Future work: This research has shown that it is indeed possible to obtain attrac-
tive anytime behaviour for classification reasoning. Future work should aim at the
following. First, our rewrite procedure can be trivally extended from ALC to OWL
as long as only concepts are being approximated. The rewrite procedure should be
extended to include role approximation, and experiments should be performed with
OWL ontologies. Second, we should develop a truly incremental algorithm, where
results of the previous iterations are used to compute the results of later iterations.
This would result in a non-naive interruptible algorithm, improving over our results
in figure 6.5. A major future task is the quest for even more effective strategies. In
particular, we would expect that strategies which exploit properties of the task for
which the ontology is deployed would bring major benefits. Finally, it remains to be
investigated how these strategies behave in realistic Semantic Web applications.

6.6 Proofs

In this section we will sketch the formul justification for the soundness and incom-
pleteness of our approximation, as well as for the monotonicity of our approximation
with increasing size of S.

The general intuition will be that we will define approximate models for a theory T ,
and a corresponding notion of approximate entailment (|=S) using these approximate
models. Since (as we will show) any approximate model is also a classical model (but
not vice versa), establishing approximate entailment |=S implies classical entailment
|=, giving a sound but incomplete approximation of classical entailment.

In a second step, we will then show that establishing |=S for a theory (T ) is equiva-
lent to establishing |= for an approximation of the theory (T S). This result will enable
us to compute approximate entailment |=S on a theory T by calling a classical reasoner
on the approximated version T S of the theory (corrolary 1).

First, we must then define the notion of an approximate interpretation, using these
to define approximate models, and using this to define approximate entailment. The
following definition of lower and upper S-approximation closely follows [35]:
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Definition 2 (Approximate Interpretations)

The lower approximate interpretation (.)I
−
S and the upper approximate interpretation

(.)I
+
S are defined as follows:

AI−S =AI+
S = AI if A ∈ S

AI−S =∅ and AI+
S = U if A 6∈ S

(¬C)I
−
S =U \ CI+

S

(¬C)I
+
S =U \ CI−S

(C uD)I
−
S =CI−S ∩DI−S

(C uD)I
+
S =CI+

S ∩DI+
S

(C tD)I
−
S =CI−S ∪DI−S

(C tD)I
+
S =CI+

S ∪DI+
S

(∃R.C)I
−
S ={d∈U | ∃e∈U : (d, e)∈RI and e∈CI−S }

(∀R.C)I
−
S ={d∈U | ∀e∈U : (d, e)∈RI implies e∈CI−S }

(∃R.C)I
+
S ={d∈U | ∃e∈U : (d, e)∈RI and e∈CI+

S }
(∀R.C)I

+
S ={d∈U | ∀e∈U : (d, e)∈RI implies e∈CI+

S }

The crucial property of these approximate interpretations is that the lower approx-
imation interpretations grow, and upper approximation interpretations shrink with
increasing size of S:

Lemma 1 (Generalised Monotonicity) Given a lower I−S and an upper S-approximate
interpretation I+

S , and two sub-vocabularies S1 ⊆ S2, the following equations hold for
all concept expressions C.

1) CI−S1 ⊆ CI−S2 2) CI+
S2 ⊆ CI+

S1

Proof: The proof is by induction over the structure of C. 2

Based on these approximations of an interpretation we can now define the notion of
an approximate model for a terminology. The basic intuition is that we slightly release
the constraints on the terminology by forcing the left-hand sides (lhs) of axioms to be
more specific, and the right-hand side (rhs) of the axioms to be more general, than
in the classical case. This can be achieved by considering also interpretations to be
models of an axioms, in which the lower approximation of the lhs is a subset of the
upper approximation of the rhs.

Definition 3 (S-approximate models) Let C and D be Description Logic con-
cepts, and T a TBox. An interpretation I is an S-approximate model of an axiom

C v D if, and only if, CI−S v DI+
S . An interpretation I is an S-approximate model

of the TBox T if, and only if, it is an S-approximate model of all axioms ax ∈ T . In
this case we write I |=S T .

The crucial property of approximate models is that the approximation preserve
models, i.e. if an interpretation is a model for an axiom or a TBox, it is also an
S-approximate model for any subset S of the vocabulary.
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Lemma 2 If I is a (classical) model for an axioms ax, it is an S-approximate model
for ax for any S. Similarly, if I is a classical model for a TBox T , it is an S-
approximate model for T .

Proof: As CI−S ⊆ CI ⊆ CI+
S we also have that CI−S ⊆ CI ⊆ DI ⊆ DI+

S for any axiom
C v D with model I. 2

Finally we need to consider monotonicity for increasing size of set S to be able to
apply an anytime algorithm to approximate classification.

Lemma 3 Let S1 ⊆ S2, T be a TBox. Then, I |=S2 T implies that I |=S1 T .

Proof: From Lemma 1 we know that CI−S1 ⊆ CI−S2 and DI+
S2 ⊆ DI+

S1 , from which
Lemma 3 follows immediately. 2

Note that this lemma shows inverse monotonicity for models, i.e. with increasing
size of S there are lesser models for any TBox. From this (proper) monotonicity of
terminological reasoning follows for classical (not approximated) subsumption’

Theorem 3 (Monotonocity of |=S) Let S1 ⊆ S2 and T be a TBox, and C and D
DL concepts. We then have that T |=S1 C v D implies that T |=S2 C v D.

The theorem follows immediately from Lemma 3. This theorem also immediately
implies the soundness of approximate subsumption (simply take in the theorem for S2

the set of all atoms in T ):

Corrolary 2 (Soundness) For any Si, T |=Si
C v D implies T |= C v D

This gives us all the results we need on approximate entailment |=S. However, we
will show that it is possible to rewrite T is such a way that computing approximate
entailments on T is equivalent to computing classical entailments |= on a rewritten
theory T S:

Theorem 4 Let T be a TBox. T |=S C v D if, and only if, T S |= C v D.
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7. Conclusion

In this document, we have developed a general framework of Web scale reasoning, in
which various strategies of interleaving reasoning and selection are developed, so that
the reasoning processing can focus on limited part of data to improve the scalability
of Web scale reasoning. That provides a general approach for interleaving reasoning
and selection of axioms. This framework is explored further with three specific se-
lection approaches: an approach of query-based selection and reasoning, an approach
of granular reasoning with selection of different perspectives and multiple views from
the users, and an approach of approximate reasoning with with selection of different
sub-languages.

For the approach of query-based seletion and reasoning, we have proposed various
selection strategies, which include syntactic-relevance-based selection functions and
semantic-relevance-based selection functions. We also explore various strategies of
over-determined processing.

For the approach of granular reasoning , we have developed various strategies under
the notion of granular reasoning to solve the problems for Web scale reasoning. We
bring the strategies of multilevel, multiperspective, starting point to Web scale reason-
ing. From the multilevel point of view, in order to meet different levels of user needs,
we have provided reasoning results with variable completeness and variable specificity.
From the multiperspective point of view, reasoning are based on different perspectives
of the knowledge source. Reasoning based on starting point utilizes the user back-
ground and provides most important reasoning results to users. These strategies and
their experiments show that it can provide a satisfying and wide variety of user needs
and removing the scalability barriers.

For the approach of approximate reasoning , we have presented an algorithm for
classification with anytime behaviour based on approximate subsumption. We give
formal definitions for approximate subsumption, and show soundness and monotonic-
ity. We have developed an algorithm and heuristics to obtain anytime behaviour for
classification reasoning. We have explored further the computational behaviour of the
algorithm on a set of realistic ontologies. Our experiments show attractive performance
profiles.
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