
LarKC
The Large Knowledge Collider

a platform for large scale integrated reasoning and Web-search

FP7 – 215535

D4.7.1 Initial Evaluation and Revision
of Plug-ins Deployed in Use-cases

Coordinator: Zhisheng Huang (VUA)
With contributions from: Zhisheng Huang (VUA), Barry

Bishop(STI Innsbruck), Florian Fischer (STI Innsbruck), Frank
van Harmelen (VUA), Jose Quesada (MPG), Lael Schooler

(MPG), Gaston Tagni (VUA), Annette ten Teije (VUA), Axel
Tenschert (HLRS), Alexey Cheptsov (HLRS), Emanuele Della

Valle (CEFRIEL), Vassil Momtchev (OntoText),Yi Zeng
(WICI), Yan Wang (WICI), Ning Zhong (WICI)

Quality Assessor: Mick Kerrigan(STI Innsbruck)
Quality Controller: Frank van Harmelen (VUA)

Document Identifier: LarKC/2008/D4.7.1/V1.0
Class Deliverable: LarKC EU-IST-2008-215535
Version: version 1.0.0
Date: September 30, 2009
State: final
Distribution: public

FP7 – 215535

Deliverable 4.7.1

Executive Summary

The essence of the LarKC project is to go beyond notions of absolute correctness and
completeness in reasoning. We are looking for retrieval methods that provide use-
ful responses at a feasible cost of information acquisition and processing. Therefore,
generic inference methods need to be extended to non-standard approaches. In con-
sequence, traditional metrics such as completeness and correctness for reasoning need
to be replaced by metrics that ratio the utility of solutions with their related costs as
a means to evaluate the chosen problem solver. Furthermore, as reasoners can employ
multiple techniques and implement different strategies a framework for evaluating and
measuring the quality and performance of them must exist that is able to take into
account these different strategies. In this document, we develop an initial framework
of evaluation and benchmarking of reasoners deployed within the LarKC platform.
We define the evaluation methods, measures, benchmarks, and performance targets
for the plug-ins to be developed in various tasks such as approximate reasoning with
interleaved reasoning and selection and rule-based reasoning. These are examined
with the perspectives of the use-cases of WP6 and WP7, as well as in terms of syn-
thetic benchmarks. This document also discusses some initial ideas and approaches for
evaluating parallel and distributed reasoning, rule-based reasoners, granular reason-
ing and, provides some ideas about the evaluation from a psychological and cognitive
perspective.

2 of 58

FP7 – 215535

Deliverable 4.7.1

Document Information
IST Project
Number

FP7 – 215535 Acronym LarKC

Full Title The Large Knowledge Collider: a platform for large scale integrated
reasoning and Web-search

Project URL http://www.larkc.eu/
Document URL
EU Project Officer Stefano Bertolo

Deliverable Number 4.7.1 Title Initial Evaluation and Revision of Plug-ins De-
ployed in Use-cases

Work Package Number 4 Title Reasoning and Deciding

Date of Delivery Contractual M18 Actual 30-Sept-09
Status version 1.0.0 final �
Nature prototype � report � dissemination �
Dissemination
Level

public � consortium �

Authors (Part-
ner)

Zhisheng Huang (VUA), Barry Bishop(STI Innsbruck), Florian Fischer (STI
Innsbruck), Frank van Harmelen (VUA), Jose Quesada (MPG), Lael Schooler
(MPG), Gaston Tagni (VUA), Annette ten Teije (VUA), Axel Tenschert
(HLRS), Alexey Cheptsov (HLRS), Emanuele Della Valle (CEFRIEL), Vas-
sil Momtchev (OntoText), Yi Zeng (WICI), Yan Wang (WICI), Ning Zhong
(WICI)

Resp. Author

Zhisheng Huang (VUA) E-mail huang@cs.vu.nl
Partner UIBK, WICI,

MPG, CE-
FRIEL, Onto-
Text, HLRS

Phone +31 (20) 5987823

Abstract
(for dissemination)

The essence of the LarKC project is to go beyond notions of absolute
correctness and completeness in reasoning. We are looking for retrieval
methods that provide useful responses at a feasible cost of information ac-
quisition and processing. Therefore, generic inference methods need to be
extended to non-standard approaches. In consequence, traditional metrics
such as completeness and correctness for reasoning need to be replaced
by metrics that ratio the utility of solutions with their related costs as
a means to evaluate the chosen problem solver. Furthermore, as reason-
ers can employ multiple techniques and implement different strategies a
framework for evaluating and measuring the quality and performance of
them must exist that is able to take into account these different strate-
gies. In this document, we develop an initial framework of evaluation
and benchmarking of reasoners deployed within the LarKC platform. We
define the evaluation methods, measures, benchmarks, and performance
targets for the plug-ins to be developed in various tasks such as approx-
imate reasoning with interleaved reasoning and selection and rule-based
reasoning. These are examined with the perspectives of the use-cases
of WP6 and WP7, as well as in terms of synthetic benchmarks. This
document also discusses some initial ideas and approaches for evaluating
parallel and distributed reasoning, rule-based reasoners, granular reason-
ing and, provides some ideas about the evaluation from a psychological
and cognitive perspective.

Keywords Reasoning, Evaluation, Benchmarking, Web Scale Reasoning

3 of 58

FP7 – 215535

Deliverable 4.7.1

4 of 58

FP7 – 215535

Deliverable 4.7.1

Project Consortium Information

Participant’s name Partner Contact
Semantic Technology Institute Innsbruck,
Universitaet Innsbruck

Prof. Dr. Dieter Fensel
Semantic Technology Institute (STI),
Universitaet Innsbruck,
Innsbruck, Austria
Email: dieter.fensel@sti-innsbruck.at

AstraZeneca AB Bosse Andersson
AstraZeneca
Lund, Sweden
Email: bo.h.andersson@astrazeneca.com

CEFRIEL - SOCIETA CONSORTILE A
RESPONSABILITA LIMITATA

Emanuele Della Valle
CEFRIEL - SOCIETA CONSORTILE A RE-
SPONSABILITA LIMITATA
Milano, Italy
Email: emanuele.dellavalle@cefriel.it

CYCORP, RAZISKOVANJE IN EKSPERI-
MENTALNI RAZVOJ D.O.O.

Michael Witbrock
CYCORP, RAZISKOVANJE IN EKSPERIMEN-
TALNI RAZVOJ D.O.O.,
Ljubljana, Slovenia
Email: witbrock@cyc.com

Höchstleistungsrechenzentrum,
Universitaet Stuttgart

Georgina Gallizo
Höchstleistungsrechenzentrum,
Universitaet Stuttgart
Stuttgart, Germany
Email : gallizo@hlrs.de

MAX-PLANCK GESELLSCHAFT ZUR
FOERDERUNG DERWISSENSCHAFTEN
E.V.

Dr. Lael Schooler,
Max-Planck-Institut für Bildungsforschung
Berlin, Germany
Email: schooler@mpib-berlin.mpg.de

Ontotext AD Atanas Kiryakov,
Ontotext Lab,
Sofia, Bulgaria
Email: naso@ontotext.com

SALTLUX INC. Kono Kim
SALTLUX INC
Seoul, Korea
Email: kono@saltlux.com

SIEMENS AKTIENGESELLSCHAFT Dr. Volker Tresp
SIEMENS AKTIENGESELLSCHAFT
Muenchen, Germany
Email: volker.tresp@siemens.com

THE UNIVERSITY OF SHEFFIELD Prof. Dr. Hamish Cunningham,
THE UNIVERSITY OF SHEFFIELD
Sheffield, UK
Email: h.cunningham@dcs.shef.ac.uk

VRIJE UNIVERSITEIT AMSTERDAM Prof. Dr. Frank van Harmelen,
VRIJE UNIVERSITEIT AMSTERDAM
Amsterdam, Netherlands
Email: Frank.van.Harmelen@cs.vu.nl

THE INTERNATIONAL WIC INSTI-
TUTE, BEIJING UNIVERSITY OF
TECHNOLOGY

Prof. Dr. Ning Zhong,
THE INTERNATIONAL WIC INSTITUTE
Mabeshi, Japan
Email: zhong@maebashi-it.ac.jp

INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER

Dr. Paul Brennan,
INTERNATIONAL AGENCY FOR RE-
SEARCH ON CANCER
Lyon, France
Email: brennan@iarc.fr

INFORMATION RETRIEVAL FACILITY Dr. John Tait, Dr. Paul Brennan,
INFORMATION RETRIEVAL FACILITY
Vienna, Austria
Email: john.tait@ir-facility.org

5 of 58

FP7 – 215535

Deliverable 4.7.1

Table of Contents

List of figures 8

List of Acronyms 9

1 Introduction 10

2 LarKC Platform 12
2.1 LarKC Architecture . 12
2.2 LarKC reasoning plug-ins . 13

2.2.1 Reasoning APIs . 13
2.2.2 Reasoning Plug-ins . 14

3 A Framework of Evaluation and Benchmarking for Ontology
Reasoners 15
3.1 General Consideration . 15
3.2 Goals and Criteria for Evaluation and Benchmarking of Reasoner Plug-ins 15
3.3 Measuring the Quality of Query Answers 16
3.4 Workflows of Evaluation and Benchmarking 17
3.5 A Specification Language for Golden Standards 17

4 Evaluation from a WP6 Perspective 22
4.1 Alpha Urban LarKC . 22
4.2 Workflows of Alpha Urban LarKC . 23
4.3 Use Cases for Reasoning Plug-ins . 24

4.3.1 Standard RDFS/DL Reasoners 24
4.3.2 Approximation Reasoners . 24
4.3.3 Rule-based Reasoners . 24
4.3.4 Parallel and Distributed Reasoners 24

5 Evaluation from a WP7a Perspective 26
5.1 Linked Life Data . 26
5.2 Semantic Data Integration Workflow 26
5.3 Evaluation criteria . 28
5.4 Use Case of Reasoning Plug-ins . 29

5.4.1 Description Logic Reasoners . 29
5.4.2 Rule-based Reasoners . 29
5.4.3 Approximation Reasoners . 30
5.4.4 Parallel and Distributed Reasoners 30

6 Evaluation of Approximation Reasoners 31
6.1 Introduction and Motivation . 31
6.2 Multiple Forms to Approximate Answers 32
6.3 Approximate Reasoning on the Semantic Web 33
6.4 Further Studies . 33

6 of 58

FP7 – 215535

Deliverable 4.7.1

7 Evaluation of Rule-based Reasoners 35
7.1 Synthetic Benchmarks . 35

7.1.1 Evaluation as a RDF based Reasoner 36
7.1.2 Evaluation as a Rule Engine . 36

8 Evaluation of Unifying Search and Reasoning from the viewpoint
of Granularity 38
8.1 Quality of Service for Reasoning . 38
8.2 Evaluation of the Starting Point Strategy 38
8.3 Evaluation of the Multilevel Completeness Strategy 39
8.4 Evaluation of the Multiperspective Strategy 39
8.5 Evaluation Function for Combined Strategies 39

9 Analysis of Parallel Reasoning and Distributed Reasoning 40
9.1 Problem and motivation . 40
9.2 Conception . 40
9.3 Technical solution and implementation 43
9.4 Distributed execution . 43
9.5 Parallel execution . 44

10 Testing Reasoners with Human Norm Data 45
10.1 Human Gold Standards . 45
10.2 Crossvalidation with ontologies . 45
10.3 Crossvalidation with Human norms . 47

10.3.1 Category norms . 48
10.3.2 Feature norms . 48

10.4 Discussion . 51

11 Conclusion 54

References 54

7 of 58

FP7 – 215535

Deliverable 4.7.1

List of Figures

2.1 The LarKC Platform Architecture . 12

3.1 Workflow of evaluation. 18
3.2 Workflow of benchmarking . 19

4.1 Alpha Urban LarKC high level overview. 22

5.1 Linked Life Data Integration Workflow. 27
5.2 Linked Life Data mapping rules. 27

9.1 Some examples of nested parallelism in a reasoner’s workflow 41
9.2 SCMD workflow . 42
9.3 MCSD workflow . 42
9.4 MCMD workflow . 42

8 of 58

FP7 – 215535

Deliverable 4.7.1

List of Acronyms

Acronym Description
DL Description Logics
MORE Multi-version Ontology Reasoner
OWL Web Ontology Language
PION The System of Processing Inconsistent Ontologies
RDF Resource Description Framework
RDFS Resource Description Framework Schema
SPARQL SPARQL Protocol And RDF Query Language

9 of 58

FP7 – 215535

Deliverable 4.7.1

1. Introduction

The essence of the LarKC project is to go beyond notions of absolute correctness and
completeness in reasoning. We are looking for retrieval methods that provide Şuse-
fulŤ responses at a feasible cost of information acquisition and processing. Therefore,
generic inference methods need to be extended to non-standard approaches. In conse-
quence, traditional metrics such as completeness and correctness for reasoning need to
be replaced by metrics that ratio the utility of solutions with their related costs as a
means to evaluate the chosen problem solver. Therefore, we will develop a framework
for evaluation and measuring the relative utility of various reasoning approaches that
will be implemented in this project.

Approximate reasoning is non-stanard reasoning which is based on the idea of
sacrificing soundness or completeness for a significant speed-up in reasoning. This
is to be done in such a way that the loss of correctness is at least outweighed by the
obtained speed-up [33]. Anytime reasoning in which more answers can be obtained over
time is expected to be a behaviour of approximate reasoning for the LarKC platform.
Granular reasoning is considered as some kind of approximate reasoning, in which
multiple perspectives/views can be selected for reasoning with variable fine-grained
data. Rule-based reasoning provides the facilities for extending ontology reasoning
with rules. Parallel reasoning and distributed reasoning are considered to be essential
for Web scale reasoning to improve the scalability. All those non-standard reasoning
approaches need new metrics and frameworks for the evaluation and benchmarking of
reasoners developed within the LarKC platform.

Streaming data poses unique challenges to the design of a benchmark. For queries
over this data to be meaningful, the input data must have semantic validity and not
just be random. As most stream queries are continuous, performance metrics should
be based on response time rather than completion time. The benchmark must be ver-
ifiable even though results returned may vary depending on when they are generated.
The database community elaborated in 2004 a stream data management benchmark
named Linear Road. Linear Road simulates an urban expressway system where tolls
are determined according to such dynamic factors as congestion, and accident proxim-
ity. In LarKC we intend to extend the Linear Road benchmark in order to stress the
reasoning capabilities of LarKC platform when selection, abstraction, and reasoning
plug-ins based on stream database techniques are used together. Such extension will
also benefit the Urban Computing use case.

These new reasoning paradigms, which fuse approaches from many different fields
will also require new approaches to evaluation. Traditional measures like soundness
and completeness will have to be enriched with measures such as recall and precision,
and worst-case complexity will have to be enriched by approaches such as anytime
performance profiles. In this document, we will develop such new evaluation measures
and apply them to the implemented reasoning plug-ins, both on synthetic datasets
and on datasets from the use-cases.

A selection of the developed reasoning methods will be deployed in the case-studies,
as determined by requirement analysis and experiments in the use-cases. An evalua-
tion of the deployed reasoning plug-ins will be provided by the end of project. The
extended Linear Road benchmark is split into three subsets that stress the selection,
the abstraction and the reasoning aspects of LarKC. The obtained reasoning bench-
mark will be used in evaluating the reasoning on stream database techniques.

In this document, we will develop the initial framework of evaluation and benc-
marking of reasoners deployed with the LarKC platform. We will define the evaluation

10 of 58

FP7 – 215535

Deliverable 4.7.1

methods, measures, benchmarks, and performance targets for the plug-ins to be de-
veloped in various tasks such as approximate reasoning with interleaved reasoning and
selection and rule-based reasoning. These will be examined with the perspectives of
the use-cases of WP6 and WP7, as well as in terms of synthetic benchmarks. Since
stream reasoners have not yet been developed at the first year of the LarKC project,
we will investigate the evaluation and benchmarks of stream reasoners in subsequent
deliverables.

We will explore the evaluation and benchmarking of reason plug-ins in subsequent
deliverables such as D4.7.2 entitled “Evolved Evaluation and Revision of plug-ins de-
ployed in use-cases”, which will be released at Month 33, and D4.7.3 entitled "Final
Evaluation and Revision of plug-ins deployed in use-cases", which will be released at
Month 42.

This document is organized as follows. In Chapter 2, we overview the LarKC Plat-
form and the general picture of reasoner plug-ins, which will be developed or deployed
within the LarKC platform. In Chapter 3, we develop a framework of evaluation and
benchmarking of reasoners. Chapter 4 and Chapter 5 examine the evaluation issues
from the perspectives of the use cases in the LarKC project. Chapter 6 explores the
evaluation of approximate reasoning. Chapter 7 describes the initial idea of the evalu-
ation of rule-based reasoners. Chapter 8 explores the evaluation of granular reasoning.
Chapter 9 discusses the ideas on the evaluation of parallel reasoning and distributed
reasoning. Chapter 10 provides some ideas about the evaluation from the psychological
and cognitive perspectives. Chapter 11 concludes the document.

11 of 58

FP7 – 215535

Deliverable 4.7.1

2. LarKC Platform

2.1 LarKC Architecture

In [45], the first version of the LarKC architecture has been proposed. This design is
based on a thorough analysis of the requirements and considering the lessons learned
during the first year of the project. Figure 2.1 shows a detailed view of the LarKC
Platform architecture.

Figure 2.1: The LarKC Platform Architecture

The LarKC platform has been designed in a way so that it is as lightweight as pos-
sible, but provides all necessary features to support both users and plug-ins. For this
purpose, the following components are distinguished as part of the LarKC platform:

• Plug-in API: defines interfaces for plug-ins and therefore provides support for
interoperability between platform and plug-ins and between plug-ins.

• Data Layer API: provides support for data access and management.

• Plug-in Registry: contains all necessary features for plug-in registration and
discovery

• Workflow Support System: provides support for plug-in instantiation, through
the deployment of plug-in managers, and for monitoring and controlling plug-in
execution at workflow level.

• Plug-in Managers: provides support for monitoring and controlling plug-ins
execution, at plugin level. An independent instance of a Plug-in Manager is

12 of 58

FP7 – 215535

Deliverable 4.7.1

deployed for each plug-in to be executed. This component includes the support
for both local and remote execution and management of plug-ins.

• Queues: provides support for deployment and management of the communica-
tion between platform and plug-ins and between plug-ins.

2.2 LarKC reasoning plug-ins

2.2.1 Reasoning APIs

All LarKC plug-ins share a common super class, namely the Plugin class. This class
provides an interface for functions common to all plug-in types. The functions provided
by the Plugin interface can be seen in Table 2.1.

Table 2.1: Plugin Interface
Function name Return type
getIdentifier() String
getMetaData() MetaData
getQoSInformation() QoSInformation
setInputQuery(Query theQuery) void

All plug-ins are identified by a name, which is a string. Plug-ins provide meta data
that describes the functionality that they offer. Plug-ins provide Quality of Service
(QoS) information regarding how they perform the functionality that they offer. All
plug-ins may need access to the initial query (entry query in the LarKC platform) and
thus a mutator is provided by specifying this query.

The reasoning plug-in will execute a given SPARQL Query against a Triple Set
provided by a Select plug-in. The interface of the reasoning plug-in can be seen in
Table 2.2.

Table 2.2: Reasoner Plug-in Interface
Function name
sparqlSelect(SPARQLQuery q, SetOfStatements s, Contract c, Context ctx)
sparqlConstruct(SPARQLQuery q, SetOfStatements s, Contract c, Context ctx)
sparqlDescribe(SPARQLQuery q, SetOfStatements s, Contract c, Context ctx)
sparqlAsk(SPARQLQuery q, SetOfStatements s, Contract c, Context ctx)

The reasoning plug-in supports the four standard methods for a SPARQL endpoint,
namely select, describe, construct, and ask. The input to each of the reason methods
are the same and includes the query to be executed, the statement set to reason over,
the contract, which defines the behavior of the reasoner, and the context, which defines
the special information of the reasoning task. The output of these reasoning methods
depends on the reasoning task being performed. The select method returns a Variable
Binding as output where the variables correspond to those specified in the query. The
construct and describe methods return RDF graphs, in the first case this graph is
constructed according to the query and in the second the graph contains triples that
describe the variable specified in the query. Finally ask returns a Boolean Information
Set as output, which is true if the pattern in the query can be found in the Triple Set,
or false if not.

13 of 58

FP7 – 215535

Deliverable 4.7.1

2.2.2 Reasoning Plug-ins

The LarKC reasoning plug-ins can range from the reasoners which provide the standard
reasoning support with RDF/RDFS/OWL data to the reasoners which realize non-
standard reasoning tasks such as reasoning with inconsistent ontologies, rule-based
reasoning, stream reasoning. Here is an (incomplete) list of the LarKC reasoning
plug-ins which have been developed or may be developed for the LarKC platform.

• SPARQL Query Evaluation Reasoner: This reasoning plug-in wraps OWL-
IM and enables the execution of SPARQL Select, Construct, Describe and Ask
queries to be executed against it.

• Pellet Reasoner: This reasoning plug-in is a wrapper of Pellet SPARQL DL
Reasoner1, which provides the reason support of Description Logics.

• DIG Interface: This reasoning plug-in provides the support for the DIG in-
terface2, which allows an external DIG reasoner to be called, like RACER,
FACT++,KAON2, PION, etc.

• OWLLink Interface: This reasoning plug-in provides the support for the
OWLLink interface, a new generation of the DIG interface, which is designed to
support reasoning with OWL data.

• OWLAPI Reasoner: This reasoning plug-in provides the support for OWL
APIs, which is a standard for reasoners with OWL data.

• PION Reasoner: This is a reasoner which can be used for reasoning with
inconsistent ontologies. Namely, given an inconsistent ontology and a query, the
PION reasoner can return a meaningful answer.

• IRIS Rule Reasoner: This is a a rule-based reasoner configurable with IRIS
inference rules.

• Stream Reasoner: This reasoning plug-in provides the support for stream
reasoning.

• OpRes Path Finder Reasoner: A reasoner to apply graph algorithms (in this
case Dijkstra) to find the "desirable path" on graphs modeled with RDF (with
a fixed schema).

• OB Path Finder Reasoner: A reasoner to compute the shortest path with
OntoBroker on graphs modeled in RDF.

• Cyc Reasoner : A reasoning plug-in, which transfers reasoning requests to the
ResearchCyc reasoner. Currently it has limited SPARQL to CycL / RDF to
CycKb support.

1http://clarkparsia.com/pellet
2http://dig.sourceforge.net/

14 of 58

FP7 – 215535

Deliverable 4.7.1

3. A Framework of Evaluation and Benchmarking for Ontology
Reasoners

3.1 General Consideration

In this chapter, we will develop a framework of evaluation and benchmarking for on-
tology reasoners. The main idea is to use the framework, which have developed in
the KnowledgeWeb project for benchmarking inconsistency reasoners in the Semantic
Web[22]. In LarKC, we can use this framework to evaluate and benchmark both stan-
dard reasoner plug-ins and non-standard reasoner plug-ins, e.g. the PION reasoner for
reasoning with inconsistent ontologies, and the MORE reasoner plug-in for reasoning
with multi-version ontologies.

In ontology engineering, evaluation and benchmarking target software products,
tools, services, and processes. The objects are called tested systems. Evaluation and
benchmarking are the systematic determination of merit, worth, and significance of
tested systems. Those merit, worth, and significance are characterized as a value
relation, which is considered as a preference relation, i.e., a partial order set 〈A,�〉.
We consider a tested system as one which is targeted by the objectives of evaluation
or benchmarking. A tested system can be characterized as an input-output function,
alternatively, called a characteristic function of the tested system. Namely, it maps a
tuple of the input parameters into an output value. A value relation is defined as a
preference relation on a set of values. Namely, a value relation is characterized as a
partial order set.

We define evaluation as the systematic determination of the values of tested systems
with respect to its partial ordered value relation, whereas benchmarking as a continuous
process for improving by systematically evaluating tested systems, and comparing
them to those considered to be the best. Namely, benchmarking is the continuous
process of evaluation.

In the LarKC project, Task 4.7.1 is requested to develop an initial framework for
evaluation of reasoner plug-ins. For the purpose of continuous improvement of the
LarKC platform, the issue of benchmarking reasoner plug-ins should be also covered.

3.2 Goals and Criteria for Evaluation and Benchmarking of Rea-
soner Plug-ins

We consider the following initial goals for evaluating LarKC Reasoner plug-ins:

• Bug Detection: A good evaluation of reasoner plug-ins should be able to
detect hidden bugs in the implementation. These bugs may be hard to detect
with manual examination by developers. It requires that test data sets cover
many functionalities/use cases of reasoner plug-ins.

• Robustness: A robust reasoner plug-in should not fail with noisy or erroneous
test data. Thus, special test data sets should be designed to test the robustness
of a reasoner plug-in.

• Performance analysis: One of the main concerns on the quality of a rea-
soner plug-in is its performance. Thus, a necessary procedure of evaluation and
benchmarking of reasoner plug-ins is to provide an analysis of their performance.

15 of 58

FP7 – 215535

Deliverable 4.7.1

The usual criteria for examining the performance of reasoner plug-ins are: (i)
the time costs, including the time cost for getting the first query answer with
anytime behavior, and the average time cost for each query answer, (ii) the re-
source consumption, including the maximal working memory request, and (iii)
the quality of the query answers, which will be discussed in the next section.

• Scalability Potential: The LarKC platform is expected to support Web scale
reasoning. Thus, the scalability of a reasoner plug-in becomes a crucial issue for
the performance of the overall platform. The scalabilty potential of a reasoner
is how well it can deal with large amount of data.

• Platform Improvement: A useful evaluation and benchmarking of reasoner
plug-ins should be able to find bottle necks within the platform. It would provide
an analysis of how the design of platform can be improved.

3.3 Measuring the Quality of Query Answers

As discussed in the last section, the quality of query answers is one of the main criteria
for evaluating and benchmarking of reasoners.

The answer value set for standard ontology reasoning is usually considered as a
Boolean value set, namely, it consists of ‘true’ and ‘false’. The answer value set for rea-
soning with inconsistent ontologies usually consists of three values accepted, rejected,
and undetermined, as introduced in the PION system. We will develop gold stan-
dards, which represents intuitive answers from a human for queries on reasoning with
consistent or inconsistent ontologies. Thus, we can compare the answers from the
tested system/approach with the gold standard, which is supposed to be intuitively
true by a human to see to what quality of query answers provided by tested systems.

For a query with an inconsistent ontology, there might exist the following difference
between an answer from the tested system/approach and its intuitive answer in a gold
standard.

• Intended Answer: the system’s answer is the same as the intuitive answer;

• Counter-intuitive Answer: the system’s answer is opposite to the intuitive
answer. Namely, the intuitive answer is ’accepted’ whereas the system’s answer
is ’rejected’, or vice versa.

• Cautious Answer: The intuitive answer is ’accepted’ or ’rejected’, but the
system’s answer is ’undetermined’.

• Reckless Answer: The system’s answer is ’accepted’ or ’rejected’ whereas the
intuitive answer is ’undetermined’. We call it a reckless answer, because under
this situation the system returns just one of the possible answers without seeking
other possibly opposite answers, which may lead to ’undetermined’.

Therefore, a value set

{intended_answer, cautious_answer, reckless_answer, counter_intuitive_answer},

can be introduced for the evaluation of answers with golden standards. An intended
answer is considered as a best one, whereas a counter intuitive answer is considered as
a worse one. Cautious answers are usually not considered as wrong answers, whereas

16 of 58

FP7 – 215535

Deliverable 4.7.1

reckless answers may give wrong answers. Thus, a preference relation on the value set
can be like this:

{intended_answer � cautious_answer,
cautious_answer � reckless_answer,
reckless_answer � counter_intuitive_answer}

Based on this preference order, we can measure the quality of query answers by
the following answer rates:

• IA Rate, which counts only intended answers. Namely the Intended Answer
Rate is defined as the ratio of the amount of Intended Answers to the total
amount of the answers.

• IC Rate, which counts non-error answers. Namely, IC Rate = (Intended An-
swers +Cautious Answers)/TotalAnswerNumber.

3.4 Workflows of Evaluation and Benchmarking

Common data sets and common golden standards are usually used for an evaluation
of different tested systems. Those systems may be heterogeneous with respect to
their input data. For example, a reasoner may support only OWL data, whereas
another reasoner may support only DIG data. Therefore a data translator is needed
to convert data sets represented in a standard format into the data sets which are
represented in a format that is supported by a tested system. Based on a comparison
between test results and golden standards, result evaluation can be done manually,
semi-automatically, or automatically. The output of the result evaluation and the
implication are further analyzed by an evaluation analysis. The methods of statistics
and visualization are usually introduced in this phase for better illustration. The
evaluation results will be ranked with respect to its value relation. Finally, it leads
to an evaluation report which concludes the values of tested systems and explain the
reasons why the system behaves differently. An investigation is usually made to detect
the problem of tested systems based on the analysis of the evaluation. The workflow
of evaluation is shown in Figure 3.1.

As discussed above, benchmarking is a continuous processing of evaluation. There-
fore for benchmarking, evaluation results are used further for the improvement of
tested systems. This would usually lead to new versions of tested systems. Based
on a benchmarking analysis, new test data sets may be re-designed or previous data
sets are adjusted for further evaluation with respect to some targeted problems. The
workflow of benchmarking is shown in Figure 3.2.

3.5 A Specification Language for Golden Standards

Manual evaluation and analysis of test results are usually time consuming, labor inten-
sive, and error prone. The formalism of golden standard will pave a way for automatic
or semi-automatic evaluation and analysis of test results.

A golden standard is an evaluation function which maps queries into answers
with confidence values. For reasoner benchmarking, a gold standard is a (partial)
function which maps queries into (intuitive) answers with a confidence value. For
example, for benchmarking inconsistency processing, we considered the answer set

17 of 58

FP7 – 215535

Deliverable 4.7.1

Figure 3.1: Workflow of evaluation.

{accepted, rejected, undetermined}. For a query "are birds animals?", the expected
answer is intuitively considered as "accepted" with confidence value "1.0". However,
for the query “are men animals?”, the expected answers may be well suitable to be
specified as an answer with lower confidence value, say, "accepted" with confidence
value "0.4", "rejected" with confidence value "0.4", and "undetermined with the con-
fidence value "0.2". Namely, we use the confidence values to represent some kinds of
uncertainty of expected answers. The confidence values can be obtained by various
approaches, like from questionnaires, statistics, machine learning, etc.

We design gold standards which are independent from a specific ontology. Namely,
it is up to evaluators/users to decide which ontologies can be applied with respect to
a golden standard.

In the following, we develop a golden standard specification language which is
suitable for SPARQL queries as reasoning queries. Thus, it is an XML file, which
is easy to use and read. Table 3.1 shows an example of a golden standard which is
encoded as an XML document.

This XML document specifies the name and the version of the golden standard.
Each query consists of a detailed query statement (in the SPARQL query language)
and its expected answer specification. Each expected answer is attached by a confi-
dence value. For non-Boolean answers, like those for sparqlSelect and sparqlConstruct
queries which would return a variable binding or a rdf graph as an answer, the values
of expected answers are specified with a detailed xml-encoded subtree as specified in
Table 3.2

Alternatively, the golden standard specification language can be defined by using
the standard meta data languages or ontology language, usch as RDF/RDFS/OWL.
Namely, a gold standard can be specified as meta data or an ontology, which provides
a possibility for reasoning with gold standards. Table 3.3 shows an example of the
RDF representation of the gold standards.

18 of 58

FP7 – 215535

Deliverable 4.7.1

Figure 3.2: Workflow of benchmarking

Table 3.1: Example of Golden Standard

<?xml version="1.0" encoding="ISO-8859-1"?>
<goldenStandard xmlns="http://wasp.cs.vu.nl/larkc/d471/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/larkc/d471/gd.xsd">

<name value="LarKC golden standard example 1" version="0.0.1"/>
<comment text="just an example, which is independent from any

particular ontology. It is up to evaluators to decide
which ontology can be applied"/>

<query id="Are birds animals?" querytype="subsumes">
<queryBody> ... </queryBody>
<expectedAnswers>

<answer value="accepted" confidence="1"/>
</expectedAnswers>

</query>
<query id="Are men animals?" querytype="subsumes">

<queryBody> ... </queryBody>
<expectedAnswers>

<answer value="accepted" confidence="0.4"/>
<answer value="undetermined" confidence="0.2"/>
<answer value="rejected" confidence="0.4"/>
<comment text="just an example which shows the possibility
of multiple answers in a golden standard"/>

</expectedAnswers>
</query>

</goldenStandard>

19 of 58

FP7 – 215535

Deliverable 4.7.1

Table 3.2: XML Format for Expected Answers

...
<query id="List all the subconcepts fo wine"

querytype="sparqlSelect">
<queryBody>
<sparqlPrefix name="rdfs"

value="http://www.w3.org/2000/01/rdfschema#/>
<sparqlPrefix name="wine"

value="http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#"/>
<sparqlBody value="SELECT ?X WHERE {?X rdfs:subClassOf wine:Wine.}"/>

</queryBody>
<expectedAnswers>
<answer confidence="1.0"/>
<value>......</value>

</expectedAnswers>
...

20 of 58

FP7 – 215535

Deliverable 4.7.1

Table 3.3: RDF representation of the gold standards

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:fields="http://sindice.com/vocab/fields#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
xmlns:larkc="http://www.larkc.eu/"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description
rdf:about="http://wasp.cs.vu.nl/larkc/d471/lang#GoldStandardName">

<larkc:name>LarKC golden standard example 1</larkc:name>
</rdf:Description>
<rdf:Description

rdf:about="http://wasp.cs.vu.nl/larkc/d471/lang#Query">
<larkc:queryID>Are birds animals?</larkc:queryID>
<larkc:queryType>subsumes</larkc:queryType>
<larkc:queryBody>...</larkc:queryBody>
<larkc:expectedAnswers>

<rdf:Bag><rdf:li><larkc:answer>
<larkc:value>accepted</larkc:value>
<larkc:confidence>1</larkc:confidence></larkc:answer></rdf:li>

</rdf:Bag>
</larkc:expectedAnswers>

</rdf:Description>
<rdf:Description

rdf:about="http://wasp.cs.vu.nl/larkc/d471/lang#Query">
<larkc:queryID>Are men animals?</larkc:queryID>
<larkc:queryType>subsumes</larkc:queryType>
<larkc:queryBody>...</larkc:queryBody>
<larkc:expectedAnswers>

<rdf:Bag><rdf:li><larkc:answer>
<larkc:value>accepted</larkc:value>
<larkc:confidence>0.4</larkc:confidence></larkc:answer>

</rdf:li>
<rdf:li><larkc:answer>

<larkc:value>undetermined</larkc:value>
<larkc:confidence>0.2</larkc:confidence></larkc:answer>

</rdf:li>
<rdf:li><larkc:answer>

<larkc:value>rejected</larkc:value>
<larkc:confidence>0.4</larkc:confidence></larkc:answer>

</rdf:li></rdf:Bag>
</larkc:expectedAnswers>

</rdf:Description>
......
</rdf:RDF>

21 of 58

FP7 – 215535

Deliverable 4.7.1

4. Evaluation from a WP6 Perspective

4.1 Alpha Urban LarKC

The “Alpha Urban LarKC” (AUL) is the first implementation, based on the first release
of the LarKC platform, of an end-to-end application for the Urban Computing use case
(WP6).

In Figure 4.1 we provide an high level overview of AUL. Users of AUL are located in
a (potentially unknown) city and would like to organize a day of visiting some places,
meeting friends, attending a musical concert, etc. They needs to find interesting
destinations (such as monuments or relevant places in the city or events that take
places in the city) and to understand the most suitable way to reach them.

To solve the problem today, the user would have to use multiple applications,
and manually pass intermediate results from one service to another. The current
implementation of AUL searches for monuments of Milan published in DBpedia1 using
the Sindice2 API3; it searches for events in Milan using the Eventful4 API5; and it
compute the most suitable way to reach them using the topology of the streets of
Milan provided by the Milan Municipality6. To do so, AUL uses the LarKC platform
configured with three alternative workflows with one common decider. Two of such
workflows select destinations (either monuments or events), the third finds the paths
to such destinations. The decider chooses which workflow to run depending on the
query issued by the the AUL client.

Figure 4.1: Alpha Urban LarKC high level overview.

1http://dbpedia.org/About
2http://sindice.com/
3http://sindice.com/developers/api
4http://www.eventful.com/
5http://api.eventful.com/
6http://www.ama-mi.it/documenti/default.asp

22 of 58

FP7 – 215535

Deliverable 4.7.1

4.2 Workflows of Alpha Urban LarKC

The two workflows selecting destinations are variants of the “SPARQL for the Web”
workflow7). They use dedicated search engines (Sindice in the case of monuments
and Eventful in the case of events) to identify relevant information on the Web, they
transform it into RDF if it is not yet in such a form, they put it in the LarKC data
layer, and they use the SimpleSparqlReasoner to answer the query issued by the client.
The quality and quantity of results is therefore largely determined by the precision
and recall of the two search engines used to identify relevant information.

The evaluation of those two workflows (see also D6.6 “2nd periodic report on data
and performances” [10]) is twofold.

1. Functional evaluation, meaning the ability to provide useful answers to the users
in reasonably short time. For this reason we intend to measure:

• maximum, minimum, average response time. Notably, the response time
of the workflows depends not only on LarKC, but also on the latency of
the network and the possible variable response time of the external services
(i.e., sindice and eventful).
• maximum, minimum, average percentage of “dropped” results, i.e., potential

results to the query that were discarded by the workflow. Reasons for the
workflow to “drop” results are numerous. So far we observed three case:
external service was not available, retrieved information is not sufficient to
answer the query, and retrieved information would be sufficient if it was
coded in a different way. Other reasons are approximation and loss of
completness or soundness.
• maximum, minimum, average percentage of wrong results. For instance, the

user asks for Milan (Italy) monuments and gets Milan (Texas) monuments
or retrieved location of events is not the real one of the venue. Appropri-
ate reasoning task (not in place in the current version) may reduce such
percentage.
• maximum, minimum, average percentage of duplicated results. For in-

stance, the same real world event appears several time in the result set
with slightly different description.

2. Stress test evaluation, meaning the ability to keep an adequate level of service
when an increasing number of concurrent users performs requests. For this reason
we intend to measure how the functional indicators depend on the number of
concurrent users.

The third workflow, which finds the paths to the destinations, is more complex and
comes in three different varieties (see also D6.3 [8]). It uses several different strategies
to identify the minimum subset of Milan streets needed to find the requested path,
it loads such subsets into the LarKC data layer and invokes a “path finding service”,
which is wrapped as a Reasoner plug-in. For this reason we believe that the most
meaningful evaluation is measuring the computational overhead introduced by the
LarKC platform. Our evaluation strategy is to compare LarKC performances in finding
the most suitable way to go from one place to another with a “term of comparison”, a

7see http://wiki.larkc.eu/LarkcPlugins#Pipelineconfigurationsthatusetheseplugins
for more details.

23 of 58

FP7 – 215535

Deliverable 4.7.1

software product which achieves the same solution without using LarKC technologies.
More details are available in Section 2.3 of deliverable D6.3 [8].

4.3 Use Cases for Reasoning Plug-ins

The performance of the workflows heavely depend on the performance of reasoner
plug-ins. Thus, it is very useful to obtain the performance information of reasoner
plug-ins by the evaluation of those plug-ins. Before we move to discuss how various
reasoning plug-in can be tested and evaluated, we would like to discuss various use
cases of reasoner plug-ins which may be deployed in the urban computing case study.

4.3.1 Standard RDFS/DL Reasoners

Standard RDFS/DL/OWL reasoners are used to obtain implicit knowledge which is
hidden inside the data. For example, in the scenarios of urban computing, one may
query or search for monuments or castles which are located around central Milan. A
standard OWL reasoner like Pellet can be used to reason with Geoname data8 to check
whether or not a location (e.g., Castello Sforzesco) is located at the central Milan or
outside the center, based on its latitude (N 45ř 28’ 11”) and longitude (E 9ř 10’ 48”)
with the definition of central Milan.

4.3.2 Approximation Reasoners

Approximation reasoners are used to obtain approximate answers, which are not nec-
essarily always sound. Take the same example above about searching for monuments
or castles which are located around central Milan. An approximate reasoner can pro-
vide some estimated probably correct answers, like Castello Sforzesco, just based on
its latitude and longitude, when it lacks a clear information about the latitude and
longitude of central Milan.

4.3.3 Rule-based Reasoners

The rule based reasoner plugin, based on the IRIS datalog reasoner9, can be used
for two purposes within Alpha Urban LarKC. The first potential application is to
perform (possibly a custom subset of) standard RDFS/OWL inference. Equipped
with a specific set of inference rules the reasoner plugin can thus be an alternative
to standard OWL reasoners such as Pelle The second potential use of the rule based
reasoner plugin (being actually a Datalog engine at its heart), is for the computation
of reachability between two locations. However, closer investigation is required to
determine the actual performance of the reasoner plugin when compared to a highly
specialized implementation.

4.3.4 Parallel and Distributed Reasoners

When thinking about reasoning over large amount of data, the scalability and per-
formance characteristics are important for the workflow execution. Distributed and

8http://www.geonames.org
9http://www.iris-reasoner.org/

24 of 58

FP7 – 215535

Deliverable 4.7.1

parallel reasoning are well-recognized approaches for improving performance and scal-
ability of the reasoning process, due to enabling diverse high-performance resources
for the plug-in execution. The optimal resource load-balancing is the most important
factor for reaching the maximal performance and scalability effect due to the distribu-
tion and parallelization. For this purpose, special techniques for avoiding idle times,
bottlenecks and redundancy should be considered.

25 of 58

FP7 – 215535

Deliverable 4.7.1

5. Evaluation from a WP7a Perspective

5.1 Linked Life Data

The work packages WP7a "Semantic Integration for Early Clinical Development" and
WP7b "Carcinogenesis Reference Production" require a massive data integration effort
to bring closer disconnected and semantically related data sources. Linked Life Data
is a RDF warehousing solution developed in the context of WP7a and also used in the
WP7b use case [2], [32]. It integrates distributed information sources that increase
the context of the knowledge and support the execution of complex data analysis
queries. Based on the experience of integrating more than 20 different datasets, several
pragmatic approaches are undertaken in order to achieve the final goal:

• Align instances that are equivalent: No single authority or best practice
policy or convention define how to identify biomedical entities. Thus, many of
the data sources distributed in RDF format use different namespaces or patterns
to generate the URI from the original database identifiers.

• Connect instances with specific forms of semantic relationships: The
network of biological databases specifies a number of semantic relationships. For
instance, the meta-thesauri of UMLS 1 and NCI 2 are described by a strict
semantic network. Another notable example are the OBO format ontologies 3

that could be mapped to SKOS [27].

• Generate semantic annotations that map textual data with the RDF
model: Data sources like PubMed 4 or Linked CT 5 contain large sections of un-
structured textual information. The application of a Named Entity Recognition
(NER) process plays an important part in linking structured with unstructured
information and finding correlations between the data.

5.2 Semantic Data Integration Workflow

The process of loading and generation of new knowledge in Linked Life Data is a
multiphase workflow. It shares many similarities with other data warehousing solu-
tions that require complex Extraction, Transformation, and Loading (ETL) scripting.
First, the knowledge base is created from different data source snapshots. Then it is
transformed to a common data model (RDF). An instance level alignment is applied
to identify the redundant entities. New implicit knowledge is then derived with a
lightweight inference schema. Finally, a massive parallel information extraction pro-
cess is performed to enrich the semantic network with statements generated as a result
of the text-mining.

An important feature of the Linked Life Data approach is the execution of ETL
scripts against a formal semantic model. We have defined 6 integration rules to link
different ontology instances:

1http://www.nlm.nih.gov/research/umls
2http://ncit.nci.nih.gov
3http://www.obofoundry.org
4http://www.ncbi.nlm.nih.gov/PubMed
5http://linkedct.org/index.html

26 of 58

FP7 – 215535

Deliverable 4.7.1

Figure 5.1: Linked Life Data Integration Workflow.

Figure 5.2: Linked Life Data mapping rules.

27 of 58

FP7 – 215535

Deliverable 4.7.1

1. Namespace mapping: Two RDF datasets use one and the same local identifier
but define different namespaces; This case is typical for data sources in RDF
format that refer to common database identifiers like GO, Entrez-Gene, etc.,
which have no resolvable URI supported by the authors.

2. Reference node: A trick to prevent the former pattern that uses a reference
dummy node to designate the database id and name; This is also the recom-
mended way to create cross-references to external data sources in the BioPAX
specification. However, the nodes remain disconnected even after the data
sources were imported.

3. Mismatched identifier: Database entries have multiple identifiers used for
different purposes; For example, the EntrezGene database has a gene symbol
(alphanumeric string) and an id (numeric value). The id could be regarded also
as a composite key constituted by a unique combination of gene symbol and
organism.

4. Value dereference: A lazy way to reference controlled vocabularies by using
only the concept name, and not the identifier; PubMed is annotated with the
MeSH term names, but not the MeSH concept ids.

5. Transitive link: A pattern used to link two data sources based on the common
relation to a third-one; DBPedia has links to Freebase and ICD-10 codes.

6. Literal extraction: A pattern used to link resources based on literals that
enumerates a list of named entities; DrugBank indication field lists a sequence
of diseases.

5.3 Evaluation criteria

Linked Life Data data integration workflow could be a very computationally and in-
put/output insensitive process, if executed against big datasets. In the first prototype
version of Linked Life Data, the input datasets were more than 2 billion RDF explicit
statements. In its final version, the prototype must be able to handle regular incre-
mental updates of data sources that could be as frequent as every day for PubMed.

Data source RDF statements Ontology language
Uniprot 1,146,084,021 Protein sequences and annotations
Entrez-Gene 107,193,308 Genes and annotation
Gene Ontology 9,656,074 Gene and gene product annotations
BioGRID 1,892,897 Protein interactions extracted from the literature
NCI 333,415 Human pathway interaction database
The Cancer Cell Map 173,914 Cancer pathways database
Reactome 2,538,793 Human pathways and interactions
INOH 432,456 Pathway database
KEGG 18,128,735 Molecular Interaction
PubMed * 900,861,385 Biomedical citations
UMLS * 79,88,309 Biomedical meta-thesaurus

The WP7a use case will evaluate the existing reasoners with respect to their func-
tional and non-functional parameters:

28 of 58

FP7 – 215535

Deliverable 4.7.1

• Functional properties

– Reduced dependencies between the different workflow steps - a workflow
property that measures the administrative costs to maintain the system,
introduces new data sources, and follows the data source evolution.

– Customization of the system - a property that indicates the cost to maintain
different version of Linked Life Data integration workflow

• Non-functional properties

– Scalability - a parameter that indicates the maximum size of the datasets
that could be processed by the Linked Life Data integration workflow.

– Performance - a parameter that measures the time for completing the
Linked Life Data integration workflow; ultimately the workflow should be
executed incrementally on a daily basis.

5.4 Use Case of Reasoning Plug-ins

5.4.1 Description Logic Reasoners

Many of the distributed data sources conform with the standard ontology languages.
For instance, the BioPAX 2.0 schema uses OWL-DL or the OBO format could be
transformed to SKOS schema. A standard OWL reasoner could be used to infer that
"Bronchial Asthma" is a "Respiratory Disease". Another example is that "Chronic
bronchitis" is a close match of "Chronic Obstructive Pulmonary Disease".

5.4.2 Rule-based Reasoners

Rule-based reasoners are a family of systems that efficiently implement logic program-
ming like:

<A> skos:broader .
 skos:broader <C> .

entails

<A> skos:broaderTransitive .
 skos:broaderTransitive <C> .
<A> skos:broaderTransitive <C> .

In the context of WP7 work package, the rule based reasoning is an efficient way
of implementing mapping rules that assists the ontology instance alignment. Another
promising case is the implementation of consistency checking rules that validate the
model soundness. The data integration process is characterized by a constant flow of
new information in the knowledge base (e.g. new versions, additional data sources,
etc.). Thus, a special form of controlling the consistency or the correctness of the
knowledge base is required. As a minimum, we would need to enforce the consistency
rules required by the SKOS specification like:

29 of 58

FP7 – 215535

Deliverable 4.7.1

<COPD_Disease> skos:prefLabel "COPD"@en .
<COPD_Disease> skos:prefLabel "Common Obstructive Pulmonary Disease"@en . - inconsistent

Another example is the BioPAX domain ontology that uses OWL-DL semantics.
From a computational view point, OWL-DL seems unnecessarily complex for multi-
billion datasets. In this particular case, the disjoint constructs could be substituted
with simple consistency checking rules.

5.4.3 Approximation Reasoners

The approximation reasoners have limited applicability to the WP7 use cases. The
scientists would need complete and sound query results, so the approximation reasoners
could be used for a quick hypothesis testing.

5.4.4 Parallel and Distributed Reasoners

The WP7 use cases operate with multi-billion datasets. The parallel and distributed
processing may decrease the time of loading new data, increase the overall scalability,
and support more datasets and richer annotations.

30 of 58

FP7 – 215535

Deliverable 4.7.1

6. Evaluation of Approximation Reasoners

In this chapter, we present some general discussion on the foundations for evaluating
approximate and anytime reasoning algorithms. We will do this in a very abstract
manner, which can be made concrete in different ways, depending on the considered
use case. In LarKC deliverable 1.4.1, we will have deeper discussions considering this
topic from various aspects.

6.1 Introduction and Motivation

The requirements for reasoning services may be quite distinct in various application
areas of Web-scale problem solving. In certain fields (as in safety-critical technical
descriptions) soundness and completeness are to be rated as crucial constraints, while
in other fields less precise answers could be acceptable if this would result in a faster
response behavior, since in these kinds of scenarios, users prefer to get a “good enough
result” under very limited time. When the data goes to Web scale, this is a very
common request.

Although optimizations for very accurate (i.e., sound and complete) reasoning has
been developed in many current standard reasoning tools, they do not comply with
this kind of approach: in an all-or-nothing manner, they provide the whole answer
to the problem after the complete computation. As discussed above, it would be
desirable, however, to have reasoning systems which can generate good approximate
answers in less time, or even provide “anytime behavior”, which means the capability
of yielding approximate answers to reasoning queries during ongoing computation: as
time proceeds, the answer will be continuously refined to a more and more accurate
state until finally the precise result is reached. Clearly, one has to define this kind of
behavior (and especially the notion of the intermediate inaccuracy) more formally.

In the discussion above, we discussed one of the factors that can be considered for
approximation algorithms that the user might want to consider to economize on in
exchange for a reduced quality of answers. There are many other resources that can
be considered to be reduced, here we list some possible directions:

• The amount of memory used by an algorithm (e.g. on memory-limited mobile
devices).

• The amount of user interactions needed to complete the task (in order to put
less burden on the user).

• The amount of data access needed by the algorithm (e.g. in pay-for-access envi-
ronments).

From our point of view, the formal framework presented in our research is general
enough to cover approximation as a trade-off quality against any resource, time being
just a particular (and frequently occurring) example.

The field of knowledge representation has a long history of studying approximate
reasoning methods for propositional and first-order logic (see e.g. [12, 20, 36, 34, 9, 42,
16]). These are only now being applied in the context of OWL reasoning for Semantic
Web technologies. Notable recent papers in this area are [39, 19, 17, 31, 38] and to the
best of our knowledge, this list is almost exhaustive. The methods in these papers are
very diverse, and no overall framework exists for formally describing and comparing
the quality of these approaches to approximate reasoning.

31 of 58

FP7 – 215535

Deliverable 4.7.1

The notion of approximate reasoning bears two different meanings in two different
communities. Often, the notion is associated with uncertainty reasoning, e.g. in the
sense of fuzzy or probabilistic approaches. The notion of approximate reasoning we
use in this document refers to approximate reasoning algorithms on data that is not
uncertain in this sense.

6.2 Multiple Forms to Approximate Answers

There are multiple forms that can be considered for approximations. Here we give
some illustrative examples and motivations.

• Approximating the set of answers from the viewpoint of incomplete-
ness: if not all answers are needed to complete a task (e.g. instead of returning
all the phone numbers of a taxi company return only one them, i.e. return a
single answer instead of multiple answers to a query).
Or, weaker, if a partial set of answers already allows partial completion of the
task. For example consider the scenario where an user is interested in comparing
the prices of a given item across various internet shops. The more shops the
better, but even a partial set of shops allows you to make a relatively good
comparison and decision.

• Approximating the set of answers from the viewpoint of unsoundness:
when wanting to rapidly exclude a suspected answer: cheaply compute an un-
sound answer set (= too large); if the suspected answer is not in the computed
(too large) answer set, it is certainly not an answer, and can be excluded. This
happens when wanting to ensure that no solutions are missed: cheaply compute
an unsound answer set (= too large); all correct answers are guaranteed to be
included (at the price of having a few extra incorrect answers).
For example, in systems where a rapid diagnosis for high risk faults is required
a valid option is to compute an initial unsound (too large) diagnosis. If this set
contains a high risk fault then it is worth spending more resources to see if the
same high risk fault is included in a more precise diagnosis. As another example
consider a query that ask for the current location in the context of location-aware
services. This query is an example of the type of queries users may formulate in
the Urban Computing use case. A possible solution would be to compute and
return an approximate location rather than the exact location. In this case, an
unsound but complete answer set would include multiple locations, one of which
is the correct one.

• Approximating individual answers: When the approximation consists not
of reducing a set of correct answers to a smaller set, but when an individual
answer is being approximated. For example, in determining the personal profile-
category of a customer a more precise profile is better, but even a high level
abstract profile-category is better than nothing. Another example is finding a
product that satisfies as many requirements of a customer as possible. A product
that only satisfies some of the requirements is already an approximate solution.

• Disjointness of approximate and perfect answers: Do the approximate an-
swers come from the same domain as the perfect answers or not? In the customer-
profile problem, no approximate abstract-class answer would ever qualify as the

32 of 58

FP7 – 215535

Deliverable 4.7.1

perfect answer, since we always want a concrete (leaf) class as an answer (hence
the domain of approximate solutions and of perfect solutions are disjoint), while
in the product-selection problem, the approximate answer to one problem could
be the perfect answer to another problem, hence the domain of approximate
solutions and of perfect solutions coincide.

• Two-sided approximation: When both an upper bound and a lower bound
are given, which approximate the perfect answer from two directions (e.g. both
complete-unsound and sound-incomplete sets of answers).

6.3 Approximate Reasoning on the Semantic Web

The observation for introducing approximate reasoning to the Semantic Web field
can be summarized as follows: most specification languages for ontologies are quite
expressive, reasoning tasks are supposed to be very costly with respect to various
resources, this being a crucial problem in the presence of large scale data.

For example, note that reasoning in most description logics that include general
concept inclusion axioms (which is simply standard today, and e.g. the case in OWL
DL) is at least EXPTIME complete, and if nominals are involved (as for OWL DL)
even NEXPTIME complete. Although those worst case time complexities are not likely
to be thoroughly relevant for the average behavior on real-life problems, this indicates
that not every specifiable problem can be solved with moderate effort. These ideas of
approximate reasoning are currently a cause of controversial discussions.

It is argued that soundness and completeness of Semantic Web reasoning is not to
be sacrificed at all, in order to stay within the precise bounds of the specified formal
semantics. On the other hand, it is also argued that the nature of many emerging
Semantic Web applications involves data that is not necessarily entirely accurate, and
at the same time is critical in terms of response time, so that sacrificing reasoning
precision appears natural (Fensel & Harmelen, 2007[13]).

Another direction is to restrict knowledge representation to so-called tractable frag-
ments that allow for fast, sound, and complete reasoning. Although this might be
useful in scenarios where all essential knowledge can be modeled within the restricted
fragment, in general there are strong arguments in favor of the usage of expressive
formalisms. Firstly, real and comprehensive declarative modeling should be possible.
A content expert wanting to describe a domain as comprehensive and as precisely
as possible will not want to worry about limiting scalability or computability effects.
Secondly, as research proceeds, more efficient reasoning algorithms might become avail-
able that could be able to deal with expressive specification formalisms more efficiently.
Having elaborated specifications enables the reuse of knowledge in a more advanced
way. Finally, elaborated knowledge specifications using expressive logics can reduce
engineering effort by horizontal reuse: Knowledge bases could then be employed for
different purposes because the knowledge is already there. However, if only shallow
modeling is used, updates would require additional effort.

6.4 Further Studies

In this chapter, we give an introduction to what we have considered for LarKC on the
evaluation of approximate reasoning, and we continue further studies of this topic in
D1.4.1. We will precisely define approximate reasoning notions, which to date have

33 of 58

FP7 – 215535

Deliverable 4.7.1

remained quite vague from the statistical perspective. We furthermore show that
our mathematical modeling can be used for guiding the development of composed
approximate reasoning systems. In the end, our mathematical modeling can be used
for rigorous comparative statistical evaluation of approximate reasoning algorithms.

34 of 58

FP7 – 215535

Deliverable 4.7.1

7. Evaluation of Rule-based Reasoners

This section describes the approaches which will be used to evaluate the performance
and applicability of the rule based reasoner plugin to be introduced in more detail
in D4.4.1 and implemented in D4.4.2. At the time of the writing of this deliverable
an initial version of this plugin is already available, based on the IRIS [5] datalog
engine. In general it is desirable to perform an evaluation of the reasoner plugin in
terms of synthetic benchmarks as well as within LarKCs use-cases where possible. The
advantages of synthetic benchmarks is that they are easily repeatable and allow an
immediate comparison with existing systems based on already published and future
results. Moreover, synthetic benchmarks can also highlight problematic corner cases,
which might not occur very often in real-world situations but still hold very informa-
tive insights. On the other hand, an evaluation in terms of real use-cases and their
associated datasets and reasoning requirements serves as a valuable assessment since
generic, synthetic benchmarks might not capture a specific application area or might
not reflect real-world requirements comprehensively. Thus an evaluation of the rule
based reasoner plugin would ideally include both, synthetic benchmarks and a use-case
centric evaluation.

Along with the type (synthetic benchmark or within a specific use-case), and thus
the underlying motivation, of an evaluation of the rule-based reasoner plugin, it is also
necessary to identify relevant performance metrics that should be collected.

Since we can use multiple custom rule-sets of varying complexity along with differ-
ent reasoning strategies, we also have to take the inherent trade-off between reasoning
efficiency, scalability and completeness of inference into account. Thus it is also cru-
cial to include the quality of an answer as a metric, as pointed out in Section 3.3, and
not regard other data-points in isolation. As pointed out, completeness means that a
reasoner plugin can deduce all statements from a knowledgebase which are logically
entailed by it. Incomplete reasoning can still infer valuable information and offer per-
formance gains as a trade-off, however the completeness of query results and moreover
the relevance of the results need to be considered.

Beyond that there are useful standard metrics which can be considered as relevant.

• Load Time. [44] identifies two main stages in ontology processing: Loading and
pre-processing the data and query answering. Depending on the concrete evalu-
ation strategy of the rule based reasoner plugin, reasoning might be performed
by means of forward chaining at load time. Additionally parsing and indexing
can make up significant quantity of loading time.

• Query Time. The second major task after reasoning is answsering concrete
SPARQL queries within a LarKC workflow. Depending on the underlying con-
crete evaluation strategy this step might involve reasoning, if a top-down evalua-
tion algorithm (backward chaining) is used. Apart from that, several factors can
have impact on the query response time, i.e. size and complexity of the dataset,
the number of results, as well as the complexity of the query.

7.1 Synthetic Benchmarks

In terms of synthetic benchmarks there are several possible approaches to evaluating
the rule based reasoners. At the very basic level it is possible to evaluate and compare
a reasoner against other (Logic Programing based) rule engines. At a more focused

35 of 58

FP7 – 215535

Deliverable 4.7.1

level it is also feasible to perform an evaluation of rule based reasoners as an RDF
based inference plug-ins. In this case standard RDF/OWL benchmarks can be used.
In the latter case, it becomes increasingly relevant to also consider SPARQL processing
and query answering as a performance factor.

These two different approaches of performing an evaluation of the plugin both
have their meritcs, however the results obtained each need to be examined in an
appropriate context, because for RDF based query answering the relations are usually
limited enough to allow more specific indexing.

So in order to get a broader picture of the performance of the rule based reasoner
we will conduct evalutions in both directions, as an RDF based inference plugin, and
as a general LP system. We acknowledge however that purely for the deployment
within a LarKC workflow the first case delivers more indicative results.

7.1.1 Evaluation as a RDF based Reasoner

Wrapped as a LarKC plugin, it is straight-forward to evaluate the rule-based reasoner
plugin as a generic RDF based inference engine, that performs RDF(S), L2, or a sub-
set of OWL inference, and communicates as a SPARQL endpoint within the LarKC
pipeline. This makes it possible to employ existing standard benchmarks, which has
the advantage of facilitating easy comparison with other inference systems that ex-
plictly target RDF or OWL based inference.

A well known example of an established synthetic benchmark focusing on (OWL
based) inference is the Lehigh University Benchmark (LUBM) [18]. The data-sets used
within the benchmark are generated by an application, which is part of the benchmark
suite, according to user defined parameters. The produced data-sets consist of instance
data over a fixed OWL ontology that describes a university organization. This makes it
possible to construct repeatable experiments with standardized data-sets of a specific
size.

Furthermore the LUBM benchmark also defines 14 queries based on which it is
possible to evaluate the correctness and completeness of a system. Beyond this, the
Berlin SPARQL Benchmark [6] or the SP2Bench test suite [35] are potentially relevant
starting points for a more comprehensive and general evaluation which also includes
and focuses on SPARQL processing.

7.1.2 Evaluation as a Rule Engine

Benchmarking directly at the level of a rule engine (a Logic Programming engine)
is distinctively harder than performing a generic OWL/RDF benchmark. This is
primarily for two reasons. Firstly, the lack of a standardized syntax makes it very hard
to construct generic examples that could be used for the evaluation of different systems.
Usually a translation step for each individual system is required to make even parsing
possible (which depending on the size of the data-set, implemented optimizations, . . .)
itself can have impact on the performance of a particular system). Secondly, various
systems support a wide range of different features, i.e. in terms of support for built-in
predicates for arithmetic, implemented semantics (with the well-founded semantics [41]
and stable model semantics [15] being the most common ones). These two points in
combination make it hard to construct a general purpose benchmark that is applicable
to a significant number of different systems and make it even hard gather meaningful
results that allow a direct comparison of such systems.

36 of 58

FP7 – 215535

Deliverable 4.7.1

A step towards solving this problem is OpenRuleBench [24]1. OpenRuleBench
consists of a number of test frameworks, which makes it possible to run various bench-
marks in a batch mode, collecting the results, and producing output. These different
test cases stress particular aspects or features of rule engines. Due to the difficulties
pointed out before, the rule sets for these test cases are hand crafted (and need adap-
tion for individual systems). However, the corresponding data-sets of varying sizes can
then be created with data generators. The three main areas of focus for the test cases
are (i) large join tests, (ii) recursion, and (iii) default negation.

IRIS, the rule engine used as basis of the rule based reasoner plugin, can already
be evaluated within OpenRuleBench. We intend to gather more comprehensive per-
formance figures and use those to further improve IRIS. As there are already results
for several systems available, this will provide a very fine grained evaluation.

1http://rulebench.projects.semwebcentral.org/

37 of 58

FP7 – 215535

Deliverable 4.7.1

8. Evaluation of Unifying Search and Reasoning from the view-
point of Granularity

Although the study of “Unifying Search and Reasoning from the viewpoint of Granu-
larity” is an ongoing research topic. Many of its key strategies are potentially effective
to LarKC use cases (This chapter assume the reader has read deliverable 4.3.1). Here
we introduce some initial thoughts on the evaluation issue and how they are related
with the use cases.

8.1 Quality of Service for Reasoning

In LarKC, according to the LarKC glossary, the Quality of Service (QoS) parameters
are “provided by the end user or application issuing a query to a LarKC platform. It can
be used to guide the way in which a particular workflow in the platform executes [1]”.
Hence, the user context for a query is of vital importance for the quality of a reasoning
result. The QoS can be evaluated from various aspects. Since unifying search and
reasoning from the viewpoint of granularity emphasizes on removing the scalability
barriers through satisfying the diversity needs from different users. The evaluation for
each of the concrete strategies focuses on the quality of services. Here we mention some
possible directions under the context of each concrete strategy designed for unifying
search and reasoning from the viewpoint of granularity (More explanations on these
strategies can be found in deliverable 4.3.1).

8.2 Evaluation of the Starting Point Strategy

The context for reasoning can be provided by the user or automatically acquired from
user related events. In the starting point strategy, constraints (such as user interests)
are automatically added to refine a SPARQL query. The evaluation can be performed
as follows. Judging by the users, compared to the results based on user input query,
if they are more satisfied with the query results acquired by the refined query, then
reasoning with a starting point can get a relatively high score. If by using the starting
point strategy, users have to be involved in the interleaving process for more times and
spend more time compared to using the original query input by the users themselves,
then reasoning with a starting point can get a relatively low score.

In deliverable 2.3.1, as a preliminary study of the starting point strategy for uni-
fying search and reasoning, we have given an example on how to acquire users’ recent
research interests from users’ publication lists and create a context for literature search.
Our ongoing research uses the Medline dataset (provided by Ontotext) from WP7a
to implement the same functionalities based on the SwetoDBLP dataset. We extract
medical researchers’ recent interest based on their publication lists. Their recent inter-
ests are automatically added as additional constraints to their input query. As a joint
collaboration, WP7a partner AstraZeneca has made some preliminary effort on col-
lecting their scientists names for this experiment and we plan to invite these scientists
to be involved in the evaluation of the refined query results.

38 of 58

FP7 – 215535

Deliverable 4.7.1

8.3 Evaluation of the Multilevel Completeness Strategy

The multilevel completeness strategy is with anytime behavior, and it is designed as
an interactive strategy which needs user involvement. When users choose to stop the
reasoning process. At least two possible reasons should be considered.

(1) Users are satisfied with the results that have been reasoned out.
(2) As a compromise, users are satisfied with the current value of completeness.
For (1), it is very subjective and differs a lot according to different tasks, and users.

For (2), a good prediction method and related evaluation for the value of completeness
or specificity is necessary. In deliverable 4.3.1, we introduced a way of predicting the
value of completeness. By correlation, we can evaluate if the prediction is good or
not. Then users can judge whether the strategy and implementation is good enough
for their use.

8.4 Evaluation of the Multiperspective Strategy

As introduced in deliverable 4.3.1, the perspectives for search and reasoning can be
acquired through a starting point or suggested through an analysis of possible per-
spectives. In deliverable 4.3.1, we choose the predicates who have relatively higher
value of edge degrees as recommended perspectives, whether this method is effective
for general use needs further evaluation by the end users.

8.5 Evaluation Function for Combined Strategies

As introduced in deliverable 4.3.1, sometimes users may choose to combine several
strategies together to produce results that they satisfy (such as the example of com-
bining multilevel completeness strategy and the starting point strategy in Table 4.2).
Hence, an evaluation method that has to consider multiple factors need to be devel-
oped. Here we provide an evaluation function, which is designed to be a linear weighted
function. A weight is assigned on each of the factor considered, and each factor has a
value that is provided by users according to their preference. The value of each factor
shows how important of this factor does the user think. The evaluation function can
be described as follows:

f(a, b, c, ..., g, ...) = w1 ∗ a + w2 ∗ b + w3 ∗ c + ... + w5 ∗ g + ..., (8.1)

Where a, b, c,..., g, ... serve as factors that affect the granular reasoning process
and reasoning results. While w1, w2,..., wn is the weight for each factor. And the
effectiveness of combined strategies can be partially evaluated by this function.

In this chapter, we introduced some very preliminary design on the evaluation of
“Unifying Search and Reasoning from the viewpoint of Granularity”. From the usecase
perspective, they are going to be connected with WP7a dataset. More future studies
will be done during year 2 of the LarKC project.

39 of 58

FP7 – 215535

Deliverable 4.7.1

9. Analysis of Parallel Reasoning and Distributed Reasoning

9.1 Problem and motivation

Many application areas of LarKC involve reasoning or intelligently searching in very
large search spaces. The reasoner is an important component of a workflow, as it
determines to a large extent the workflows performance and scalability characteristics.
Therefore, a reasoner can easily become a considerable bottleneck in the workflow’s us-
ability for use cases of real complexity. With regard to this, new innovative techniques
for improving reasoning characteristics in a robust manner need to be elaborated in
the LarKC project. In addition to a number of software solutions and implementa-
tion techniques enabled by LarKC, an infrastructure will be enabled apart from user
desktop machines also large-scale high-performance (clusters of workstations, such
as provided by the HLRS partner) and Grid/Cloud environment (both desktop and
high-performance), ensuring that the full potential of progressive IT is enabled for the
execution of plug-ins and workflows.
Due to a number of challenges posed for the efficient and scalable workflow’s execu-
tion, we chose a reasoner as a pilot plug-in type for the investigation of techniques that
ensure that the full potential of the LarKC infrastructure resources is enabled for the
workflow execution. The experience gained and approaches elaborated for a reasoner
will be adapted by other workflow’s components.
For a reasoner, the realization of these techniques will allow distributed and parallel
reasoning. Parallel reasoning is the main approach to speeding up the reasoning pro-
cess using several computing nodes (processors) by running a reasoner on a parallel
resource. Existing conceptions of achieving the combined benefits of using several
computing nodes and intelligent reasoning will be adopted by LarKC. We will also
concentrate on dealing with problems, such as balancing the processor loads or avoid-
ing idle times, bottlenecks, and redundancy. On the scope of a workflow, parallel
reasoning will be enabled by plug-in redistribution technique that allows execution
of single plug-ins (in our case a reasoner) on remote resources, involving mentioned
high-performance systems (distributed reasoning). The feedback will be given to the
WP5 and used for improving the architecture’s proposal for the LarKC project. Fur-
ther, within the LarKC project the first analysis of adequate plug-ins takes place for
a reasoner. For this the pellet reasoner (PelletSPARQLDLReasoner) is in the focus of
the analysis for parallelization and distribution. However, before becoming concrete
in terms of implemenation models it is necessary to evaluate well prooven distribution
and parallelization techniques in order to meet the requirements of the LarKC project.
The next sections will explain generall approaches which are evaluated with the aim
to adapt the most beneficial technique to a selected reasoner.

9.2 Conception

Several techniques are recognised for the implementation of parallel and distributed
reasoning, including MPI, OpenMP, MapReduce, and others. In our investigations, we
will analyse those techniques and elaborate a parallelisation and distribution strategy
for several variations of reasoner.
The techniques are beneficial when one of the following applies for a reasoner’s workflow
(see Figure 9.1):

40 of 58

FP7 – 215535

Deliverable 4.7.1

1. Nested source code decomposition: when source code’s regions can be iden-
tified with clear control/data dependencies between them, for example in the
form of a graph

2. Nested data decomposition: when data can be portioned and processed
independently

3. Inherited parallelism: parallel execution of several processes at the same time.

Figure 9.1: Some examples of nested parallelism in a reasoner’s workflow

Based on code/data dependencies, several standard configurations of the workflow
can be recognized for a reasoner that allows for parallel reasoning. Figures 9.2, 9.3
and 9.4 illustrate typical reasoner’s workflows.

• Single Code Multiple Data (SCMD workflow): In this case the data that is
being processed in the code region can be constructed of subsets that have no
dependencies between them (see Figure 9.2). The same operation is performed
on each of the subsets.

• Multiple Code Single Data (MCSD workflow without conveyer dependen-
cies): For this workflow, several different operations are performed on the same
data set. No dependencies between processed data set exist. This is typical for
transformation of one data sets to another one according to rules that are specific
for each subset of the produced data (see Figure 9.3)

• Multiple Code Multiple Data (MCMD workflow): This type of workflow is
the combination of both previous workflows (SCMD and MSCD).

With regard to the current implementations in LarKC the mentioned techniques
have to be considered. For this, we have to think not only of distribution and paral-
lelizetion of one sinlge plug-in but a whole workflow for executing reasoning task (e.g.
combined with translation and selection tasks) should be considered. Nevertheless,
the first step for adaption of such techniques is to use them for one singel plug-in (dis-
tribution / parallelization of a reasoner). Further, we describe the distribution and
parallelization strategies elaborated with regard to the identified workflow’s types.

41 of 58

FP7 – 215535

Deliverable 4.7.1

Figure 9.2: SCMD workflow

Figure 9.3: MCSD workflow

Figure 9.4: MCMD workflow

42 of 58

FP7 – 215535

Deliverable 4.7.1

9.3 Technical solution and implementation

This section gives a short overview of the technologies that are the best practices
from many years experience of LarKC partners in the field of parallel and distributed
computing and can be potent used for WP developments. Describing the proposed
solution, we highlight their usage scenarios in the LarKC project.

9.4 Distributed execution

When thinking of distributed execution there is a certain set of prerequisites to be
considered. A distributed execution should be easy to implement, the support of
several types of resources’ system organisation (e.g. a Grid, a Cloud environment)
should be considered and features for workflow monitoring and basic performance
analysis should be considered as well.

• Easy Implementation: With regard to the current structure of the LarKC
project, it is quite important to ensure a proper applicable way of implemen-
tation for a distributed execution in order to avoid a too complex structure.
The utilization of distributed execution techniques for reasoning in LarKC is in
the need of being simple in a way that enables developers to make use of the
benefits without being challenged with complex problems. However, changes in
the current code are required in order to adapt relevant techniques and increase
performance and scalability.

• Resource Types: The usage of several resource types is required to ensure that
all necessary resources are available und usable for a distributed execution for
the reasoning methdos in LarKC. For this, techniques such as Grid Computing
and Cloud Computing are considered because of efficiency and robustness.

• Monitoring and Performance Analysis: Methods for monitoring and basic
applications for performance analysis ensure a tidy execution of the distributed
execution for reasoning issues of LarKC. Monitoring techniques are required
to ensure that during execution the reasoning processes are in line with the
expectations. Furthermore, a performance analysis provides the developer with
information for increasing scalability and hints motivates improvements to the
current approach.

Identification of the software framework, that enables the requested features and
allows for flexible components deployment on platforms from user the desktop to the
supercomputer as a component of the Grid/Cloud, was done by WP4 in cooperation
with WP5. As a result, the COMPs framework is proposed that is developed in the
Barcelona Supercomputing Center and can greatly support distributed execution of
the LarKC components.

COMPs [3] aims to facilitate the development of Grid applications, allowing for
the inherent parallelism of LarKC components when running on the Grid. COMPs
has three main distinctive features:

• The modular COMPs runtime follows the Grid Component Model (GCM), a
component model especially designed for the Grid whose reference implementa-
tion is provided by ProActive realization.

43 of 58

FP7 – 215535

Deliverable 4.7.1

• COMPs offers a straightforward programming model that particularly targets
Java applications. The simplicity of this programming model keeps the Grid
transparent to the user, who is able to program their applications in a Grid-
unaware fashion. The user is only required to select the tasks to be run on the
Grid, while the application can remain completely free of Grid-related calls.

• COMPs can use a wide range of Grid middlewares thanks to the JavaGAT API.
JavaGAT provides a uniform interface for job submission and file transfer opera-
tions, being able to choose between different middlewares like Globus, UNICORE
or SSH.

9.5 Parallel execution

For parallel execution there are some strong arguments towards use of the following
approaches:

• MapReduce: MapReduce is a framework for the execution of processes running
in parallel, it was invented by Google Inc. By usage of MapReduce the processes
are executed on several nodes (e.g. sites in a grid environement). It is beneficial
for the SCMD approach.

• Message Passing Interface (MPI): MPI [14] is a standard for describing the
message exchange in distributed environments for parallel computations. MPI
defines a set of operations for the processes that are executed in parallel. The
Open MPI library will be used for the implementation of LarKC components,
using the full MPI-2 standard implementation for the support of parallel ap-
plications. Both MCSD and MCMD approaches, which require an information
exchange of the processes running in parallel, will benefit from the MPI realiza-
tion by means of Open MPI.

Where possible, we will try to combine both of the approaches in order to reach
the maximal productivity of the reasoner’s parallel execution. For this, the reasoner
itslef has to be parallized and if possible the processing of data will be done in parallel
on distributed resources.

44 of 58

FP7 – 215535

Deliverable 4.7.1

10. Testing Reasoners with Human Norm Data

10.1 Human Gold Standards

People are the ultimate judges of how well a reasoner handles everyday facts or even
the output of a LarKC use case workflow. Unfortunately, the extent to which people
agree with each other has to be taken into account when using human judgment as
a standard. For example, human categorization judgments, even by experts, often do
not agree well with each other (for a review, see [37]). As we will see, lay people rarely
agree with each other 100% on anything but the most basic facts. There may well be
higher consensus among people for the fact that ‘A screwdriver is-a tool’ than that ‘a
knife is-a tool’. Such low agreement imposes an upper bound on how good a reasoner
can be when measured against human judgment. What we need are measures on to
what extent people agree with each other on basic facts. Such measures and datasets
can be found in the psychological literature.

We distinguish between agreement through consensus and agreement through ag-
gregation. While the former is common practice when developing ontologies, the latter
is typically used in experimental psychology and knowledge elicitation. In agreement
through consensus, people know they are working together. They can communicate
with each other and monitor each other’s opinions as they form. They may even use
tools that facilitate collaboration, such as ontology editing programs. Alternatively,
In agreement through aggregation people make independent judgments without nec-
essarily knowing that their responses will be later aggregated into published norms.

In section 10.2 we suggest how reasoners can be tested with crossvalidation using
ontologies as data. Section 10.3 describes three sets of norms that are relevant for
testing reasoners. In section 10.4 we summarize the main points and discuss how data
from the two agreement integration methods could be combined.

10.2 Crossvalidation with ontologies

Ontologies, when designed by groups are expressions of human agreement. In cross
validation one measures how well a model, parameterized on some training data, per-
forms on future as-yet-unseen data. This is the approach taken to test the Inductive
Materialization plug-in in WP3 (for more on the integration of machine learning in the
semantic web, see deliverable 3.1. Coming from the statistics tradition as a measure
to test generalization, cross validation can be applied to testing symbolic reasoning,
where there is no parameter fitting to speak of, but there are models and data. In
the context of cross validating reasoners, the model would be the reasoning mecha-
nism. The ‘training’ data would be the majority of the ontology, and the ‘test’ dataset
would be a small subset of the ontology that has been previously removed. This small
test subset could vary in size, from one single statement to a sizeable percentage of
the ontology. This procedure of reconstructing the excised parts could be iterated by
randomly removing different parts; a reasoner’s average performance would be pro-
portional to how well it can ‘rediscover’ the test data in all subsets.

We would expect reasoners and ontologies to interact, i.e., there would be no
single reasoner that performs best on all possible knowledge domains. Therefore it
is important to consider multiple ontologies. Typical general knowledge ontologies

45 of 58

FP7 – 215535

Deliverable 4.7.1

include openCyc, WorldNet and DBpedia.1 These are all part of the linked data
project and heavily cross-reference each other, so in a way they work together instead
of being mutually exclusive.

The CyC ontology contains “hundreds of thousands of terms, along with millions of
assertions relating the terms to each other, forming an upper ontology whose domain
is all of human consensus reality” [25] With version 2.0, the entire CyC ontology
is now open source and probably the most well-developed upper ontology available,
benefitting from 20 years of continuous development.

WordNet [29, 28] is a lexical database that brings together groups of synonyms
(so-called synsets) in large networks, which show the semantic relationships between
them. On the basis of the position of two words in such a network, it is possible to
determine how different or similar the concepts are that they represent.

Miller and Fellbaum [28] used the strategy of deciding a priori diagnostic properties
of the different domains, with different types of relational links for objects and events.
In a way, it’s a lot more restricted than CyC and DBpedia in the relations it represents.
For nouns referring to objects, relations such as synonymy, hyponymy (e.g., “dog” is
a hyponym of “animal”), and meronymy (e.g., “mouth” is part of “face”) are argued
to play a prime role in describing the semantic organization. For verbs, instead, the
authors propose that relational links among verb concepts include troponymy (i.e.,
hierarchical relation in which the term at a level below, e.g., "crawling" is a manner
of a term at a level above, e.g., travel/go/move/locomote), entailment (e.g., "snoring"
entails "sleeping") and antonymy (e.g., "coming" is the opposite of "going"), while
relations such as meronymy would not apply. For cross validating a reasoner using
WordNet, we could remove the proposition "coming is_the_opposite_of going", and
then ask the reasoner what is the opposite of “going”.

DBpedia [7], which aspires to be an RDF version of Wikipedia, consists of around
274 million statements2 scraped from the most structured part of Wikipedia, the in-
foboxes (which are small fraction of the total text of Wikipedia). DBpedia benefits
from Wikipedia’s near real-time updating, so it reflects the current consensus about a
particular topic. DBpedia thus represents real community agreement; it evolves along
with Wikipedia.

Does DBpedia have normative value? Wikipedia seems to have established its
reputation despite initial doubts, and assigning trust to Wikipedia content seems to
be an active field . To some extent DBpedia inherits Wikipedia’s reputation, but to
our knowledge there are no studies on DBpedia’s reliability or consistency. While using
DBpedia it is easy to find minor annoyances such as multiple classes that represent
the same concept and multiple equivalent relations; constructing a query takes some
legwork, (e.g., visiting the pages for each candidate class.) Using DBpedia to cross
validate reasoners may need to be postponed until DBpedia matures further.

Limitations

Existing reference ontologies have some limitations. For a start, in typical ontology
development other factors besides community agreement may come into play. Politics
could be involved. (e.g., “should we put Volkswagen Passat in the luxury car category?
The advertising department would like that”). Other subtler social factors could come
into play as well.

1There are other general knowledge ontologies, such as YAGO and freebase, but they share enough
features with the ontologies described here to be safely omitted

2According to http://wiki.dbpedia.org/Datasets#h18-3, visited 12/09/2009 10:42

46 of 58

FP7 – 215535

Deliverable 4.7.1

Second, the rules for ontology development (and sometimes even the ontology edit-
ing tools) enforce consistency. That is, humans will produce more consistent ontologies
under these conditions than when left to their own devices3.

Third, most ontologies are created by experts. This is reasonable; if we want to
accurately capture a domain, we ask the experts. But ontologies may not reflect the
knowledge of the lay person. There’s also evidence that aggregated crowds’ judgment
can outperform experts’, a phenomenon called ’the wisdom of crowds’ [40].

The last problem is that there are no statistics on the degree of agreement for each
statement. For DBpedia these could be inferred from editing history, but it would
take quite a lot of extra assumptions and work. The number of edits on the Wikipedia
page each triple came from could be a proxy for human agreement on the statement
the triple represents. But there is no 1:1 match between a statement in Wikipedia
and a tripple in DBpedia. Proxies such as number of edits per pages suffer from the
credit assignment problem. For example, it could be that only a single statement in
the page caused an edit war making all triples extracted from that page to be marked
as controversial. Thus, it seems that currently there is no direct data on agreement
for DBpedia triples.

Using norms instead of expert-created ontologies captures the average opinion.
Norms are the result of people with no exceptional training. They are not created
by a community, but typically by students that have no stake in the consistency or
accuracy of the norms they will contribute to.

10.3 Crossvalidation with Human norms

This section describes what we called agreement through aggregation in the intro-
duction, exemplified by psychological norms. Psychologists create norms mainly to
generate better experiments. For example, in psycholinguistics, one may want to con-
trol for how related certain words are because they prime each other. In memory
experiments, words that have similar features may be lumped together during study,
and then retrieved together. Categorization experiments also need to control for pre-
vious knowledge people have. For these reasons, norming studies are useful and highly
cited. The typical set up is that people get an open-ended question and they generate
as many answers as possible (e.g., give members of the category ‘furniture’, or list fea-
tures of ‘chair’). Note that these norms differ from the consensual aggregation method
(see previous section) in that people were not coordinated. That is, what one person
wrote was not seen by the rest.

These norms are non-exhaustive: for example, if the object accordion has nine
features in the dataset, that doesn’t mean it cannot have more; it just means that the
more popular features are those nine. All the norms we describe below use a threshold,
i.e., they only include features if a minimum of say five people mentioned them.

Crossvalidation could be done on these features available on the dataset. For
example, we could remove two out the nine features for accordion, and ask a reasoner
to generate the missing features. The Inductive Materialization plug-in in WP3 does
this kind of crossvalidation to infer features of people on a small FOAF dataset, but it
uses statistical methods instead of a reasoner. There are some inference problems on
structured data that both statistical methods and logic-based reasoners can be applied
to (see deliverable D3.1 for more on this). Thus, testing techniques that are tried and
true for statistical methods could be extrapolated to testing reasoners. The added

3although this hypothesis has not being tested to the best of our knowledge

47 of 58

FP7 – 215535

Deliverable 4.7.1

advantage of using human norms is that for each statement we have an agreement
value.

In general, category norms provide is_a relations only. Feature norms should
provide mainly has_a, and is_a relations, although other relations are possible (see
examples in subsections below).

The common factor in the norming studies is that they describe how much agree-
ment there is for each fact in the norms, and this distinguishes them from the previously
mentioned ontologies. There are many varieties of norming studies (category norms,
feature norms, plausibility norms and recall norms) but for simplicity here we discuss
only the first two.

10.3.1 Category norms

Category norms simply relate objects to categories, representing the is_a relation. We
mentioned in the introduction that human judgments are often unreliable; category
membership judgment is exceptional in that it has proved to be rather reliable, even
across ages [21].

Battig and Montague’s (1969)

The most popular norms are Battig and Montague’s category norms [4]: Google scholar
shows 1471 citations at the time of this writing. Due to their wide use, these norms
were later recomputed with a more contemporary population [30]. Participants saw
category names projected on a screen (see Table 1 for an Example) and they had to
write as many items from that category as they could. After a limited time, a new
category appeared and they had to list members again, and so on. The proportion
of people that generated each item for each category is indicative of its typicality.
Categories are overlapping, i.e., an item can be a member of more than one category.

As we can see in the example, typicality varies widely, which is one reason we
should take it into account when dealing with is_a statements.

Limitations. The categories we can access from the norms are but a small subset
of the categories available in upper ontologies. Also, these norms do not include
any kind of taxonomy that could help reasoning. In other words, in no way are we
suggesting that norms should replace ontologies.

10.3.2 Feature norms

In feature norms people list as many features as they can think of for different objects.
People are asked to provide a list of the features they believe to be important in describ-
ing and defining the meaning of a given word (See tables 2 and 3 for examples). Numer-
ous statistics are available, such as feature saliency (production frequency, cue validity)
and measures of how features are distributed across concepts. Both the McRae and
Vinson’s sets of norms are downloadable from www.psychonomic.org/archive.

McRae et al.’s (2005)

McRae et al. [26] collected feature norms from approximately 725 participants for 541
living (dog) and nonliving (chair) concepts. Each participant got a sheet with words
that each denoted a concept. They needed to fill in as many of these lines as they

48 of 58

FP7 – 215535

Deliverable 4.7.1

Table 10.1: : Example "furniture" and "reading materials” in the category norms

An article of furniture Proportion

Chair(s) 0.9

Table 0.75

Couch 0.7

Bed 0.58

Desk(s) 0.49

Sofa 0.32

Dresser(s) 0.28

Loveseats(s) 0.26

Coffee-table 0.19

Lamp(s) 0.17

Nìghtstand)s) 0.13

Ottoman 0.1

Recliner 0.1

Stool(s) 0.11

end-table(s) 0.1

Futon 0.08

A type of reading material Proportion

Magazines 0.93

Book(s) 0.92

Newspapers 0.71

Novel 0.26

Journal(s) 0.21

Article 0.17

Textbook(s) 0.17

Pamphlet(s) 0.13

Internet-related 0.09

Internet 0.05

website 0.03

49 of 58

FP7 – 215535

Deliverable 4.7.1

could with properties of the concept to which the word refers. Table 2 shows examples
of concepts and features from these norms.

Table 10.2: Two concepts, ACCORDION and AIRPLANE as example data from
McRae et al (2005)

Concept Feature Production frequency

ACCORDION a_musical_instrument 28

ACCORDION associated_with_polkas 9

ACCORDION has_buttons 8

ACCORDION has_keys 17

ACCORDION inbeh_-_produces_music 6

ACCORDION is_loud 6

ACCORDION requires_air 11

ACCORDION used_by_moving_bellows 8

ACCORDION worn_on_chest 6

AIRPLANE beh_-_flies 25

AIRPLANE found_in_airport 8

AIRPLANE has_a_propeller 5

AIRPLANE has_engines 5

AIRPLANE has_wings 20

AIRPLANE inbeh_-_crashes 7

AIRPLANE is_fast 11

AIRPLANE is_large 8

AIRPLANE made_of_metal 8

AIRPLANE requires_pilots 11

AIRPLANE used_for_passengers 15

AIRPLANE used_for_transportation 10

AIRPLANE used_for_travel 7

8

McRae et al. norms contain very detailed information about features, for exa8mple
how they relate to different sensory modalities. These ‘features of features’ were scored
by independent judges.

Limitations. As with category norms, we do not have norms for all concepts. The
bias here is towards concrete nouns; it is difficult to ask people for features of abstract
concepts. Because people convey their conceptual knowledge through a linguistic filter,
some types of information are transmitted more clearly than others. For example,
information types such as parts (has a handle), color (is red), are easily verbalizable.
However, other types of knowledge are omitted in verbal feature norms, particularly

50 of 58

FP7 – 215535

Deliverable 4.7.1

when participants must produce features as short written descriptors. Events and
verbs norms were added later on with Vinson and Vigglioco’s norms.

Vinson and Vigglioco (2008)

Vinson and Vigglioco went beyond the domain of nouns referring to objects, and
applied the same techniques to the domain of actions and events. They tested 280
participants for a total of 456 words (169 nouns referring to objects, 71 nouns referring
to events, and 216 verbs referring to events).

The speaker-generated features were classified into the five categories. First, per-
ceptual features, defined as “features that describe information gained through sensory
input, including body state and proprioception,” were identified and then subdivided
into visual features, referring to the sense of vision (22.2% of all the features), and
other perceptual features from other sensory modalities (19.7%). The nonperceptual
features were then classified into functional (those features referring to the purpose of a
thing, “what it is used for,” or the purpose or goal of an action; 26.5%), motoric (“how
a thing is used, or how it moves,” or any feature describing such motor component of
an action; 12.0%), and other (37.6%; the total percentage of scored features exceeds
100%, since some features met criteria for more than one feature type classification).

The main advantage of this dataset over McRae et al.’s is that different meanings
are evaluated separately. McRae attempted to avoid ambiguous concept names, al-
though this is impossible given the fact that such a large proportion of English words
are ambiguous. When a word is both a verb and a noun, Vinson and Vigglioco asked
people to generate features for the noun and for the verb meanings separately (e.g.,
hammer as an object, rather than the verb meaning of hammer). A second, minor
advantage is that features are often one-word (see table 3).

Limitations. As before, feature norms deal well with concrete concepts, but not
so well with abstract ones (What are the features of commitment?). Words referring
to events are more abstract than words referring to objects, so in that sense Vinson
and Vigglioco’s [43] norms are a good step in the right direction.

A common limitation to all feature norms is that information is in the form: subject
+ predicate (that is, object + feature). For maximum consistency with classical triple
structure, we would need to parse the predicate into a verb and an object. This may
not be a trivial endeavor for some features. For example, In table 3, ‘in ARTICHOKE
is round’ the verb ‘is’ would be a reasonable inference, but other features such as
digest, water, and health are harder to rewrite as a verb and an object.

An additional common limitation of human norms is that they are much reduced
in scope when compared to mega-ontologies such as CyC, DBpedia and WordNet.
However, nothing prevents us from collecting additional norming data, as a specific
need arises (for example, in the use cases).

10.4 Discussion

This section presents two ideas:
(1) It is possible to use existing cognitive science data (norms) as a technique

to evaluate reasoning with everyday facts. With norms, we have human agreement
data for every single statement. When testing reasoners, missing a low-agreement fact
should not be penalized as much as missing a high-agreement one.

Furthermore, linking norms to general knowledge ontologies would combine the
strengths of both methods. For example, thanks to category norms (see Table 1) we

51 of 58

FP7 – 215535

Deliverable 4.7.1

Table 10.3: Two nouns (ARTICHOKE, HORSE), two verbs (ARGUE, STOP) from
the Vinson and Vigglioco (2008) feature norms

52 of 58

FP7 – 215535

Deliverable 4.7.1

know that a chair is considered an article of furniture more strongly than a sofa; this
information could be added to an ontology. WP3 is working on adding an extension to
SPARQL that would consider probabilities (the PROB modifier), and the storage layer
in WP5 allows for a fourth slot for each triple that could well contain this information.
While merging the norm and ontology data perhaps could improve reasoning with
everyday facts, it is not directly related to testing reasoners, so this idea would be
explored somewhere else.

(2) Crossvalidation methods that are common in machine learning and cognitive
science may well be applicable to testing logic-based reasoners. While there are many
attempts in the literature to combine statistical and logic-based reasoning (e.g., [23,
11]), there seems to exist less work on testing both approaches with the same methods
and data. Crossvalidation seems like a sensible first step and could open the door to
more thorough exchange of testing methods.

53 of 58

FP7 – 215535

Deliverable 4.7.1

11. Conclusion

This document is designed to present an initial framework of evaluation and benc-
marking of reasoners for the LarKC platform. Therefore, what we have done in this
document is to define the evaluation methods, measures, benchmarks, and perfor-
mance targets for the plug-ins to be developed in various tasks such as approximate
reasoning with interleaved reasoning and selection and rule-based reasoning. Those
measures are examined with the perspectives of the use-cases of WP6 and WP7, as
well as in terms of synthetic benchmarks.

In the subsequent document of this deliverable D4.7.2, we will perform experiments
on reasoners with the data sets, and report our evaluation and benchmarking of those
reasoners. Moreover, we will evaluate the reasoners by using other benchmarks de-
veloped in other projects. The evaluation methods and benchmarks developed in this
document will be integrated with the SEALS Platform.

SEALS 1 is a project on Semantic Evaluation at Large Scale. The goal of the
SEALS project is to provide an independent, open, scalable, extensible, and sustain-
able evaluation infrastructure for semantic technologies. The SEALS Platform allows
the remote evaluation of semantic technologies thereby providing an objective com-
parison of the different existing semantic technologies. This will allow researchers and
users to effectively compare the available technologies, helping them to select appro-
priate technologies and advancing the state of the art through continuous evaluation.
The SEALS Platform will provide an integrated set of semantic technology evaluation
services and test suites. They will be used in two public and worldwide evaluation
campaigns. The results of these evaluation campaigns will be used to create semantic
technology roadmaps identifying sets of efficient and compatible tools for developing
large-scale semantic applications. It would be very useful to integrate the evalua-
tion methods and benchmarks developed in the context of LarKC with the SEALS
Platform.

1http://www.seals-project.eu/

54 of 58

FP7 – 215535

Deliverable 4.7.1

References

[1] Larkc glossary, 2009.

[2] Bo Andersson and Vassil Momtchev. D7a.1.1 - requirements summary and data
repository, September 2008. Available from: http://www.larkc.eu/deliverables/.

[3] BSC Barcelona Supercomputing Center. Web page of the comp
superscalar framework, 2009. Avaialbse at the BSC page at
http://www.bsc.es/plantillaG.php?cat_id=547.

[4] W. F. Battig and W. E. Montague. Category norms for verbal items in 56 cate-
gories - a replication and extension of connecticut category norms. J Exp Psychol
J Exp Psychol, 80(3P2):1–&, 1969.

[5] B. Bishop and F. Fischer. IRIS-Integrated Rule Inference System. In Proceed-
ings of the 1st Workshop on Advancing Reasoning on the Web: Scalability and
Commonsense (ARea2008) hosted by the 5th European Semantic Web Conference
(ESWC-08), 2008.

[6] C. Bizer and A. Schultz. Benchmarking the Performance of Storage Systems that
expose SPARQL Endpoints, 2008.

[7] Christian Bizer, Jens Lehmann, Georgi Kobilarov, SŽren Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. Science, services and agents on the
world wide web : DBpedia - a crystallization point for the web of data. Journal
of Web Semantics, 2009.

[8] Irene Celino, Daniele Dell’Aglio, Emanuele Della Valle, and Kono Kim. D6.3
- Urban Computing environment specification, May 2009. Available from:
http://www.larkc.eu/deliverables/.

[9] Mukesh Dalal. Anytime clausal reasoning. Annals of Mathematics and Artificial
Intelligence, 22(3–4):297–318, 1998.

[10] Daniele Dell’Aglio, Emanuele Della Valle, and Irene Celino. D6.4 - 2nd pe-
riodic report on data and performances, September 2009. Available from:
http://www.larkc.eu/deliverables/.

[11] Y. Ding. IR and AI: the role of ontology. In Proceedings of 4th International
Conference of Asian Digital Libraries, Bangalore, India, page 10Ð12, 2001.

[12] W. P. Dowling and J. H. Gallier. Linear-time algorithms for testing the satisfia-
bility of propositional Horn formulae. Journal of Logic Programming, 1:267–284,
1984.

[13] Dieter Fensel and Frank Van Harmelen. Unifying reasoning and search to web
scale. IEEE Internet Computing, 11(2):94–96, March/April 2007.

[14] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
June 2008. Published by High-Performance Computing Center Stuttgart, HLRS.

[15] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
Proceedings of the 5th International Conference on Logic Programming, pages
1070–1080, 1988.

55 of 58

FP7 – 215535

Deliverable 4.7.1

[16] P. Groot, A. ten Teije, and F. van Harmelen. Towards a structured analysis of
approximate problem solving: a case study in classification. In Proceedings of the
Ninth International Conference on Principles of Knowledge Representation and
Reasoning (KR’04), Whistler, Colorado, June 2004.

[17] Perry Groot, Heiner Stuckenschmidt, and Holger Wache. Approximating descrip-
tion logic classification for semantic web reasoning. In Asunción Gómez-Pérez and
Jérôme Euzenat, editors, The Semantic Web: Research and Applications, Second
European Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May
29 - June 1, 2005, Proceedings, volume 3532 of Lecture Notes in Computer Sci-
ence, pages 318–332. Springer, 2005.

[18] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for OWL knowledge base
systems. Web Semantics: Science, Services and Agents on the World Wide Web,
3(2-3):158–182, 2005.

[19] Ian Horrocks, Lei Li, Daniele Turi, and Sean Bechhofer. The Instance Store: DL
reasoning with large numbers of individuals. In Proceedings of the International
Workshop on Description Logics, DL2004, Whistler, Canada, pages 31–40, 2004.

[20] E. J. Horvitz. Reasoning about beliefs and actions under computational resource
constraints. In L. N. Kanal, T. S. Levitt, and J. F. Lemmer, editors, Uncertainty
in Artificial Intelligence 3, pages 301–324. Elsevier, Amsterdam, The Netherlands,
1987.

[21] D. V. Howard. Category norms: A comparison of the battig and montague (1969)
norms with the responses of adults between the ages of 20 and 80. The Journal
of Gerontology, 35(2):225, 1980.

[22] Zhisheng Huang, Johanna Volker, Qiu Ji, Heiner Stuckenschmidt, Christian Meil-
icke, Stefan Schlobach, Frank van Harmelen, and Joey Lam. Benchmarking
the processing of inconsistent ontologies, knowledgeweb d1.2.2.1.4/d2.1.6.3, 2007.
Available from: http://wasp.cs.vu.nl/knowledgeweb/D2163/kweb2163.pdf.

[23] K. S. Jones. Information retrieval and artificial intelligence. Artificial Intelligence,
114(1):257–281, 1999.

[24] S. Liang, P. Fodor, H. Wan, and M. Kifer. OpenRuleBench: an analysis of the
performance of rule engines. In Proceedings of the 18th international conference
on World wide web, pages 601–610. ACM New York, NY, USA, 2009.

[25] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira. An introduction to the
syntax and content of cyc. In Proceedings of the 2006 AAAI Spring Symposium
on Formalizing and Compiling Background Knowledge and Its Applications to
Knowledge Representation and Question Answering, page 44Ð49, 2006.

[26] K. McRae, G. S. Cree, M. S. Seidenberg, and C. McNorgan. Semantic feature pro-
duction norms for a large set of living and nonliving things. Behavioral Research
Methods, Instruments, and Computers, 37:547Ð559, 2005.

[27] Alistair Miles and Sean Bechhofer, August 2009. Available from:
http://www.larkc.eu/deliverables/.

56 of 58

FP7 – 215535

Deliverable 4.7.1

[28] G. A. Miller and C. Fellbaum. Semantic networks of english. Cognition, 41(1-
3):197, 1991.

[29] GA Miller, R Beckwith, C Fellbaum, D Gross, and KJ Miller. Introduction to
WordNet: an on-line lexical database*. International Journal of Lexicography,
3(4):235–244, 1990.

[30] James Van Overschelde, Katherine Rawson, and John Dunlosky. Category norms:
An updated and expanded version of the norms. Journal of Memory and Lan-
guage, 50(3):335, 289, 2004.

[31] Jeff Z. Pan and Edward Thomas. Approximating OWL-DL ontologies. In Proceed-
ings of the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26,
2007, Vancouver, British Columbia, Canada, pages 1434–1439. AAAI Press, 2007.

[32] Angus Roberts, Kurt Straif, James McKay, Martin Stetter, and Hamish Cun-
ningham. D7b.1.1a - requirements summary and data repository, November 2008.
Available from: http://www.larkc.eu/deliverables/.

[33] Sebastian Rudolph, Tuvshintur Tserendorj, and Pascal Hitzler. What is approxi-
mate reasoning? In Proceedings of RR2008, LNCS 5341, pages 150–164, 2008.

[34] Marco Schaerf and Marco Cadoli. Tractable reasoning via approximation. Arti-
ficial Intelligence, 74:249–310, 1995.

[35] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
Sp2bench: A sparql performance benchmark. CoRR, abs/0806.4627, 2008. infor-
mal publication.

[36] B. Selman and H. A. Kautz. Knowledge compilation using Horn approximations.
In Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-
91), pages 904–909, 1991.

[37] J. Shanteau, E. Salas, and G. Klein. What does it mean when experts disagree?
In Linking expertise and naturalistic decision making, pages 229–244. Lawrence
Erlbaum Associates, Mahwah, NJ, 2001.

[38] Heiner Stuckenschmidt. Partial matchmaking using approximate subsumption.
In Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence,
July 22-26, 2007, Vancouver, British Columbia, Canada, pages 1459–1464. AAAI
Press, 2007.

[39] Heiner Stuckenschmidt and Frank van Harmelen. Approximating terminological
queries. In H.L. Larsen and et al, editors, Proc. of the 4th International Conference
on Flexible Query Answering Systems (FQAS)’02), Advances in Soft Computing.
Springer, 2002.

[40] James Surowiecki. The Wisdom of Crowds. Anchor, August 2005.

[41] A. VAN GELDER, K.A. ROSS, and J.S. SCHLIPF. The Well-Founded Semantics
for General Logic Programs. Journal oi the AssocM1on for Computmg Machinery,
38(3):620–650, 1991.

57 of 58

FP7 – 215535

Deliverable 4.7.1

[42] F. van Harmelen and A. ten Teije. Describing problem solving methods using
anytime performance profiles. In Proceedings of ECAI’00, pages 181–186, Berlin,
August 2000.

[43] D. P. Vinson and G. Vigliocco. Semantic feature production norms for a large set
of objects and events. Behavior Research Methods, 40(1):183, 2008.

[44] T. Weithoner, T. Liebig, M. Luther, and S. Bohm. What’s Wrong with OWL
Benchmarks? In Proceedings of the Second International Workshop on Scalable
Semantic Web Knowledge Base Systems (SSWS 2006), pages 101–114, 2006.

[45] Michael Witbrock, Blaz Fortuna, Luka Bradesko, Mick Kerrigan, Barry Bishop,
Frank van Harmelen, Annete ten Teije, Eyal Oren, Vassil Momtchev, Axel Ten-
schert, Alexey Cheptsov, Sabine Roller, and Georgina Gallizo. D5.3.1 - require-
ments analysis and report on lessons learned during prototyping, Joune 2009.
Available from: http://www.larkc.eu/deliverables/.

58 of 58

