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Preface 
 
Initiatives like Linked Open Data have resulted in a rapid growth of the Web of data, and this 
growth is expected to continue. While impressive progress has been made in recent years in 
scalable storing, querying, and reasoning with languages like RDFS and OWL, existing 
reasoning techniques fail to perform when applied at Web-scale, due to the quantities of 
instance data, expressiveness of the ontologies, or the inherent inconsistency and 
incompleteness of data on the Web. 
 
These problems of scale are increasingly compounded by the appearance of highly dynamic 
data streams. Data streams occur in modern applications such as traffic engineering, 
applications of RFID tags, telecom call recording, medical record management, financial 
applications, and clickstreams. On the Web, many sites distribute and present information in 
real-time streams of semi-structured text. In many of these application areas, the ability to 
perform complex reasoning tasks that combine streaming information (both data and text) 
with background knowledge would be of great benefit. Stream reasoning is a new 
multidisciplinary approach for semantically processing high-frequency high-volume streams 
of information in combination with rich background knowledge. 
 
The NeFoRS2010 workshop is a joint continuation of earlier successful workshop on scalable 
and dynamic reasoning for the Semantic Web, NeFoRS'07, NeFoRS'08, and SR'09.  
 
The  workshop organizers would like to thank the following researchers for their involvement 
and contribution to the work of the programme committee: Daniele Braga (Politecnico di 
Milano, Italy), Irene Celino (CEFRIEL, Italy), Marko Grobelnik (Josef Stefan Institute, 
Slovenia), Michael Grossniklaus (Politecnico di Milano, Italy and ETH Zurich, Switzerland), 
Pascal Hitzler (Wright State University, Ohio, USA), Mihai Lupu (Information Retrieval 
Facility, Austria), Marko Luther(DOCOMO Research Labs, Munich, Germany), Vassil 
Momtchev (Ontotext, Bulgaria),   Jose Quesada (Max Planck Institute, Germany), Angus 
Roberts (University of Sheffield, United Kingdom), Magnus Sahlgren (SICS, Sweden), Anne 
Schlicht (University of Mannheim, Germany),  Stefan Schlobach (Free University of 
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Stream Reasoning:
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Abstract. Data Streams - unbounded sequences of time-varying data
elements - are pervasive. They occur in a variety of modern applications
including the Web where blogs, feeds, and microblogs are increasingly
adopted to distribute and present information in real-time streams. We
foresee the need for languages, tools and methodologies for represent-
ing, managing and reasoning on data streams for the Semantic Web.
We collectively name those research chapters Stream Reasoning. In this
extended abstract, we motivate the need for investigating Steam Rea-
soning; we characterize the notion of Stream Reasoning; we report the
results obtained by Politecnico di Milano in studying Stream Reasoning
from 2008 to 2010; and we close the paper with a short review of the
related works and some outlooks.

1 Motivation

The use of the Internet as a major source of information has created new chal-
lenges for computer science and has let to significant innovation in areas such
as databases, information retrieval and semantic technologies. Currently, we are
facing another major change in the way information in provided. Traditionally
information used to be mostly static with changes being the exception rather
than the rule. Nowadays, more and more dynamic information, which used to be
hidden inside dedicated systems, is getting available to decision makers. A large
part of this dynamic information is an (almost) “continuous” flow of information
with the recent information being more relevant as it describes the current state
of a dynamic system.

Continuous processing of these flows of information (namely data streams)
has been largely investigated in the database community [1]. Specialized Data
Stream Management Systems (DSMS) are available on the market and features
of DSMS are appearing also in major database products, such as Oracle and
DB2.

On the contrary, continuous processing of data streams together with rich
background knowledge requires specialized reasoners, but work on semantic tech-
nologies is still focusing on rather static data. In existing work on logical rea-
soning, the knowledge base is always assumed to be static (or slowly evolving).
There is work on changing beliefs on the basis of new observations [2], but the
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solutions proposed in this area are far too complex to be applicable to gigantic
data streams of the kind illustrated in the oil production example above.

As argued in [3], we strongly believe that there is a need to close this gap
between existing solutions for belief update and the actual needs of supporting
decision process based on data streams and rich background knowledge. We
named this little explored, yet high-impact research area Stream Reasoning.

2 Stream Reasoning

In this section we characterize the notion of Stream Reasoning giving a definition
and explaining what is peculiar to it.

Definition 1. Stream Reasoning: logical reasoning in real time on gigantic
and inevitably noisy data streams in order to support the decision process of
extremely large numbers of concurrent users.

Peculiar to stream processing, and thus also to Stream Reasoning, are the
notions of window [4] and continuous processing [5]. In the following we charac-
terize Stream Reasoning with regards to these two notions.

Window Traditional reasoning problems are based on the idea that all the in-
formation available should be taken in to account when solving the problem.
In Stream Reasoning, we eliminate this principle and restrict reasoning to a
certain window of concern which consists of a subset of statement recently
observed on the stream while previous information is ignored. This is nec-
essary for different reasons. First of all, ignoring older statements allows us
to saves computing resources in terms of memory and processing time to
react to important events in real time. Further, in many real-time applica-
tions there is a silent assumption that older information becomes irrelevant
at some point.

Continuous Processing Traditional reasoning approaches are based on the
idea that the reasoning process has a well defined beginning (when a request
is posed to the reasoner) and end (when the result is delivered by the system).
In Stream Reasoning, we move from this traditional model to a continuous
processing model, where requests in terms of reasoning goals are registered
at the reasoner and are continuously evaluated against a knowledge base
that is constantly changing.

3 Current State of Development in Politecnico di Milano

Deductive Stream Reasoning has been studied at Politecnico di Milano. In [6],
we specified a general and flexible architecture - based on the LarKC conceptual
architecture [ICSC08] - for reasoning in the presence of data streams and rich
background knowledge. This architecture leverages existing DSMS and SPARQL
engines and anticipates the possibility to extend RDF graphs, by introducing
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RDF streams and extending SPARQL to continuously processing RDF streams
observed through windows. Both these extensions are present in Continuous
SPARQL (or simply C-SPARQL) [7].

C-SPARQL adds RDF streams to the data types supported by SPARQL,
much in the same way in which the stream type has been introduced to extend
relations in relational data stream management systems. An RDF stream is
defined as an ordered sequence of pairs, where each pair is made of an RDF
triple and its timestamp τ :

. . .
(〈subji, predi, obji〉 , τi)

(〈subji+1, predi+1, obji+1〉 , τi+1)
. . .

Timestamps can be considered as annotations of RDF triples, and are mono-
tonically non-decreasing in the stream (τi ≤ τi+1). More precisely, timestamps
are not strictly increasing because they are not required to be unique. Any
(unbounded, though finite) number of consecutive triples can have the same
timestamp, meaning that they “occur” at the same time, although sequenced in
the stream according to some positional order.

Consider the program querying Twitter for tweets containing “I’m reading”.
The result is a stream that get continuously update with new tweets that match
the search criteria. Such stream can be represented as an RDF stream of triples,
stating what each twitter user is reading, annotate with the posting date-time.

. . .
(〈: Giulia, : isReading, : Twilight〉, 2010-02-12T13:34:41)

(〈: John, : isReading, : TheLordOfTheRings〉, 2010-02-12T13:36:28)
. . .

As a simple example of C-SPARQL, we informally explain a query that counts
how many followers of Giulia have been reading a book in the last hour.

1 REGISTER QUERY NumberOfGiuliaFollowersWhoAreReadingBooks COMPUTE EVERY 15m
AS

2 SELECT count(distinct ?user) as ?numberOfGiuliaFollowersReadingBooks
3 FROM <http :// streamingsocialdata.org/followersNetwork >
4 FROM STREAM <http :// streamingsocialdata.org/reading >
5 [RANGE 1h STEP 15m]
6 WHERE { ?user :follows :Giulia.
7 ?user :isReading ?x .
8 ?x a :Book . }

At line 1, the REGISTER clause is use to tell the C-SPARQL engine that
it should register a continuous query, i.e. a query that will continuously com-
pute answers to the query. The COMPUTE EVERY clause states the frequency
of every new computation, in the example every 15 minutes. The query joins
background and streaming knowledge. At line 3, the standard SPARQL clause
FROM is used to load in the default graph an RDF graphs describing who is fol-
lowing who on Twitter. At line 4, the clause FROM STREAM is used to tell the
C-SPARQL engine to process the stream exemplified above. Next, line 5 defines
the window of observation over the RDF stream. The window considers all the
stream triples in the last hour, and is advanced every 15 minutes. The content
of the window is loaded in the default graph as if it were a standard RDF graph.
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However, every 15 minutes new triples enter into the window and old triples exit
from the window, thus the default graph is modified accordingly. Note that the
query result does not change during the slide interval, and is only updated at
every slide change. Triples arriving in the stream between these points in time
are queued until the next slide change and do not contribute to the result until
then. The WHERE clause is standard; it includes a set of matching patterns that
operates over the default graph as in a standard SPARQL query. The results are
project by the SELECT clause at line 2, which also count the number of distinct
bindings of the variable ?user.

In [8], we propose a formal semantics of C-SPARQL language together with
a query graph model which is an intermediate representation of queries devoted
to optimization. We discuss the features of an execution environment, based on
[6] that leverages existing technologies and we introduce optimizations in terms
of rewriting rules applied to the query graph model, so as to efficiently exploit
the execution environment.

Finally in [9], we elaborate on the deductive reasoning support to C-SPARQL.
The [7] version of C-SPARQL can work under entailment regimes different from
RDF simple semantics, but at the cost of recomputing, when the window slides,
any deduction that depends from the triples in the window. In [9], we propose a
technique for incremental maintenance of materializations of ontological entail-
ments that exploits the transient nature of streaming data. By adding expiration
time information to each RDF triple, we show that it is possible to compute a
new complete and correct materialization whenever the window slides, by drop-
ping explicit statements and entailments that are expired, and then incremen-
tally adding all the deduction that depends on the new triples that entered the
window and tagging them with a correct expiration time.

The following example extends the C-SPARQL query above by requesting
to count only the followers of Giulia who were only twittering about books.
The ontological definition of user, who only twittered about books, is given in
OWL-RL as follows:

:UserOnlyTwitteringAboutBooks rdfs:subClassOf :User;
rdfs:subClassOf [

a owl:Restriction;
owl:onProperty :tweets;
owl:allValuesFrom :Book;

] .

An example of C-SPARQL query that leverages such ontological definition
can be the following one:

1 REGISTER QUERY NumberOfGiuliaFollowersWhoAreReadingBooks COMPUTE EVERY 15m
AS

2 SELECT count(distinct ?user) as ?numberOfGiuliaFollowersOnlyReadingBooks
3 FROM <http :// streamingsocialdata.org/followersNetwork >
4 FROM STREAM <http :// streamingsocialdata.org/reading >
5 [RANGE 1h STEP 15m]
6 WHERE { ?user :follows :Giulia.
7 ?user a :UserOnlyTwitteringAboutBooks .
8 ?user :isReading ?x .
9 ?x a :Book . }
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In order to be evaluated, this C-SPARQL query requires the engine to reason
about the triple in the window and incrementally evaluate which users satisfy
the ontological definition of UserOnlyTwitteringAboutBooks.

4 Related Work

Two approaches, alternative C-SPARQL exists: Streaming SPARQL [10] and
Time-Annotated SPARQL (or simply TA-SPARQL) [11]. Both languages intro-
duce the concept of window over stream, but only C-SPARQL brings the notion
of continuous processing, typical of stream processing, into the language; all
the other proposal still rely on permanent storing the stream before process-
ing it using one-shot queries. Moreover, only C-SPARQL proposes an extension
to SPARQL to support aggregate functions1. Such a support for aggregates is
designed specifically to exploit optimization techniques [8] that push, whenever
possible, aggregates computation as close as possible to the raw data streams.

We believe that C-SPARQL is an important piece of the Stream Reasoning
puzzle, it supports OWL RL entailment [9] is only a first step toward Stream
Reasoning.

There are many ideas of how to support incremental reasoning on the differ-
ent levels of complexity. In particular, there are approaches for the incremental
maintenance of materialized views in logic [13], object-oriented [14] and graph
databases [15], for extensions of the well known RETE algorithm for incremen-
tal rule-based reasoning [16, 17] and even some initial ideas of how to support
incremental reasoning in description logics [18, 19]. All of these methods operate
incrementally, thus they are appropriate to treat information that changes, but
none of them is explicitly dedicated to process an (almost) continuous flow of
information with the recent information being more relevant.

5 Outlook

In these two years of work on Stream Reasoning, we have been mainly work-
ing on C-SPARQL and its corresponding infrastructure. We believe they pro-
vide an excellent starting point for Stream Reasoning research, because a) RDF
streams provide an RDF-based representation of heterogeneous streams and b)
C-SPARQL construct query can create RDF snapshots that can feed informa-
tion into existing reasoning mechanisms. We already made a first step in this
direction, investigating the incremental maintenance of ontological entailment
materializations [9]. This approach needs to be generalized to more expressive
ontological languages.

Moreover, the extraction of patterns from data streams is subject of ongoing
research in machine learning. For instance, results from statistical relational
learning are able to derive classification rules from example data in very effective
1 For a comparison between C-SPARQL and SPARQL 1.1 support for aggregates see

[12]
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ways. In our future work, we intend to link relational learning methods with C-
SPARQL to facilitate pattern extraction on top of RDF streams.

Finally, we envision the possibility to leverage recent developments in dis-
tributed and parallel reasoning [20, 21] as well as the compilation of reasoning
tasks into queries [22] for scaling up to gigantic data streams and to extremely
large numbers of concurrent reasoning tasks.
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Abstract. We examine whether the existing ’Database in the Cloud’
service SimpleDB can be used as a back end to quickly and reliably
store RDF data for massive parallel access. Towards this end we have
implemented ’Stratustore’, an RDF store which acts as a back end for the
Jena Semantic Web framework and stores its data within the SimpleDB.
We used the Berlin SPARQL Benchmark to evaluate our solution and
compare it to state of the art triple stores. Our results show that for
certain simple queries and many parallel accesses such a solution can
have a higher throughput than state of the art triple stores. However,
due to the very limited expressiveness of SimpleDB’s query language,
more complex queries run multiple orders of magnitude slower than the
state of the art and would require special indexes. Our results point
to the need for more complex database services as well as the need for
robust, possible query dependent index techniques for RDF.

1 Introduction

The current trend of Cloud Computing promises to make complex IT solutions
available as service to customers in a way that is elastically scalable and priced
with a utility pricing model that enables customers to only pay for what they
need. For the customer cloud services are expected to bring the following ad-
vantages: 1) The customer does not need to worry about the complexities of
running the respective IT solution 2) Large cloud computing companies might
be able to realize scale effects and hence offer a solution at a price lower than
would be possible at a smaller scale 3) The customer does not need to provision
infrastructure for an estimated future peak demand because he/she can scale
the solution on demand and pay only for what is needed.

Many different kinds of cloud computing services are currently offered, rang-
ing from infrastructure services (that allow to rent virtual computers) to complex
software service [1]. Of particular interest for this paper are “database as a ser-
vice” offerings - and here in particular the probably oldest and best established
one: SimpleDB by Amazon [2]. This service offers access to a distributed, scal-
able and redundant database management system with a utility pricing model.
For the user they hold the promise of not having to worry about the problematic



2

issues of a large scale database development; of not having to worry about re-
dundancy, backups, and scaling to large data sets and many concurrent database
clients. This paper examines whether these promises can be realized for the stor-
age of RDF; whether the SimpleDB service allows to build a scalable, “worry
free” triple store.

We have examined this question by creating Stratustore, a system that ex-
tends the Jena Semantic Web Framework to store the data in the SimpleDB.
We have evaluated its performance using the Berlin SPARQL Benchmark.

After a short discussion of related work this paper starts with a description
of the most important properties of the SimpleDB service. Next, the architecture
and design of the Stratustore is described. Then the evaluation setup and results
are detailed before a conclusion and discussion.

This paper is a summary presentation of the diploma thesis by Raffael Stein
which has been published in German under the title “Entwicklung eines skalier-
baren Semantic Web Datanspeichers in der Cloud”.

2 Related Work

To the authors best knowledge no comparable work that uses and evaluates a
database cloud service as a back end for a triple store exist. There is, however,
considerable work showing great promise for the use of column stores - the
database technology also underlying the SimpleDB service - for the storage and
querying of RDF data [3–5]. Under the name of “Connected Commons” [6],
Talis is offering specifically a triple store as a service. This service is surely an
important offer if only RDF data needs to be processed, however, it lacks the
maturity and entire ecosystem of different services to be found with Amazon.

Amazon Web Services

Amazon was one of the first large companies to provide cloud computing services
and by now offers a large variation of cloud services. For the realization and
evaluation of the Stratustore we used the Simple Storage Service (S3), the Elastic
Compute Cloud (EC2) and - most importantly - the SimpleDB. Each of these
service will be introduced below.

The Simple Storage Service (S3) is a distributed key-value store that
scales to very large data sets and massive parallel access. The use of the service
is charged based on traffic and the amount of data stored. Within the context
of this work it was used mostly to store the machine images that were then
executed with EC2 (see below). The S3 is also needed for large CLOBS that go
beyond the limits of SimpleDB (see below).

The Elastic Compute Cloud (EC2) is a service that offers virtual com-
puter instances that can be rented on an hourly basis. These instances are started
with an operating system and applications based on an machine image stored
in the S3. EC2 is charged based on the properties of the virtual computer (the
customer can choose between different numbers of cores, sizes of RAM and hard
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disks), the time it is used and the data transferred into and out of Amazon’s data
centers. In the context of this work EC2 was used to run all tests and evaluations
- indeed the assumption behind Stratustore is, that it would be used mostly by
applications that are already executed within Amazons cloud.

The SimpleDB is a distributed database that is accessed through a simple
REST or SOAP interface. The use of the SimpleDB is charged based on the
amount of data stored (on a much higher rate than for the S3) and based on the
computing time needed for query processing.

The SimpleDB service works without a user defined schema and organizes
data in the following way (see also figure 1):

– At the highest level data is organized in domains, which can be thought of
as akin to a collection or a table.

– Within domains data is stored in items, which is the basic unit of data for
the SimpleDB.

– Each item then has a number of attributes each of which can have one or
more values.

Fig. 1. Data organization inside the SimpleDB

A number of limitations exist that restrict the flexibility of this data organi-
zation: A domain must not be larger than 10GB, an item must not have more
than 256 attribute-value pairs and an attribute value may not be larger than
1024 bytes. The SimpleDB also uses strings as the only data type - meaning that
all comparisons have to be done lexically and that numbers have to be padded
with zeros to make this possible.

The SimpleDB keeps multiple copies of a user’s data to ensure reliability
and security of the data. However, the way this is done means that it supports
only “eventual consistency” [7] where the propagation of changes can take a
few milliseconds and a user query may hit an out-of-date copy. It is not even
guaranteed that a query after a write by the same client will reflect that write
operation. SimpleDB also lacks any support for normalized data.
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The biggest drawback is the limited expressiveness of SimpleDB’s query lan-
guage. In syntax this language is modeled after SQL select queries, it is, however,
much less expressive. In particular it does not allow for comparisons between
stored entities; it does not allow for any kind of join operation. That means
queries containing dependencies must be split into several parts. Imagine ask-
ing the database for all work colleagues of Bob. We do not know the company
name, so a first query has to find out the company Bob works at. A second query
can then find everyone who works at that company. Without an index for that
specific case, it is not possible to answer a query like this in a single run.

3 Stratustore

We have implemented the Stratustore that extends the Jena Semantic Web
Framework such that it can use Amazon’s SimpleDB as back end (in addition
to relational database and main memory back ends already provided). A sketch
of its overall architecture is shown in figure 2.

Jena Model API

Stratustore

SPARQL

Jena Graph API

Fig. 2. Architectural overview of the Stratustore

The Stratustore is realized as an implementation of the Jena Graph API
which supports a simple interface organized around triples. A detailed descrip-
tion of the layers of Jena can be found in [8]. Adding and removing is done on
a per triple basis and queries are realized based on TripleMatch objects; objects
that specify the expected values for some or all of the parameters of a triple.
The data models of RDF and of the SimpleDB differ considerably and there are
many different ways to map the one to the other.

The easiest mapping is a triple oriented mapping - one triple is mapped to
one item, with the attributes subject, predicate and object. This simple mapping
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avoids SimpleDB’s restrictions with respect to the maximum attribute/value
count. However, this mapping also means that - because of the missing join
functionality in SimpleDB’s query language - only a very small part of SPARQL
query processing can be done by the SimpleDB. Most of the processing for queries
needs to be done on the client resulting in a large amount of data that needs to
be transferred over the network and very bad performance.

Other mappings define sets of triples that are jointly represented by one
item. For example all triples that share the same subject and predicate can be
represented in one item. Or all triples that share the same predicate could be
mapped to one item. These mappings increase the portion of queries that can
be answered directly within SimpleDB, however, at the same time they increase
the risk of hitting the limits of the SimpleDB data model.

For the Stratustore we settled for an entity oriented mapping: here one item
represents the data known about one subject, i.e. one item for entity “s” con-
tains the data from all triples that contain s as a subject. Each item has an
attribute “S” that has the URI of the subject represented by the current item.
The other attributes then each represent one predicate defined for this subject
and the attribute values represent the objects (recall that multiple values for one
attribute are allowed in SimpleDB’s data model). Taking figure 1 as an example,
that means that a shirt is stored as a item with the attributes “S” containing
the subject URI, the attribute “price” containing the price and the attribute
“colors” containing the available colors.

The entity oriented mapping allows to push a larger proportion of SPARQL
queries into the SimpleDB, for many cases entire SPARQL queries can now be
translated into SimpleDB queries. However, it runs afoul of SimpleDB’s limi-
tations on the number of attribute-value pairs: Whenever an entity appears as
subject in more than 255 triples there will need to be more than one item and
queries will have to be split. Simple techniques can restrict the runtime impact
occasional split items have; nevertheless it adds considerable additional complex-
ity. Another problem for the entity oriented mapping is the fact that SimpleDB
does not allows to query for attribute names, and that hence with the entity
oriented mapping variables in predicate position pose a challenge. This second
problem can be solved simply by creating a second item for each entity, this
time with attribute names representing object and attribute values representing
predicates, however, this leads to a doubling of storage requirements and update
times. The final problem (affecting all possible mappings) is caused by the size
limitation on attribute values which have no correspondence in RDF. This means
that long values have to be stored separately in the S3 and that a separate text
index is necessary. The code to handle these restrictions of the SimpleDB is not
currently implemented in Stratustore and so it too is bound by these restrictions.
The Berlin SPARQL Benchmark does not break these restrictions, so this was
(almost) no problem for the evaluation.
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3.1 Uploading Data

By the time this work was performed (early 2009), SimpleDB did not support
any bulk uploading and hence naive uploading (one triple at a time) took a
very long time. We used 1) triples collected by subject, 2) sorted inputs and 3)
multi-threading to help tackle this problem.

1. Since multiple data changes to one item can be bundled into one request and
since one item represents all the triples known about one subject URI, the
Stratustore merges consecutive triple update requests with the same URI.
This means that it holds back and combines consecutive update requests for
triples that have the same subject. The item thus constructed is sent to the
SimpleDB only when an update request with a different URI arrives or the
the update process is finished.

2. To make best use of this bundling based on consecutive triples we pre-sorted
the input triples by subject for larger updates.

3. Finally we used 10 threads running in parallel. More than 10 threads and
distributing the uploading over more than one machine brought no additional
benefit - 10 threads on one computer were already already able to saturate
the write capacity of one SimpleDB domain.

Recently the SimpleDB interface was changed to allow bulk uploads of up to 25
items at one time. With this new functionality we would expect the upload speed
to increase by up to one order of magnitude, the structure of our implementation
would not need to change fundamentally.

3.2 Querying Data

The Stratustore supports querying through the Jena Graph API and the SPARQL
language. SPARQL is the W3C standardized query language for RDF graphs.
Its specification can be found at [9]. The triple oriented query operations of the
Graph API can be translated directly into SimpleDB SELECT queries. To an-
swer SPARQL queries, a mapping from SPARQL to the much simpler SELECT
language is needed. The SPARQL query strings are broken into parts which are
then transformed into SELECT queries and evaluated separately by SimpleDB.
The results of all single queries are merged again and returned to the user. For
this the pipeline shown in figure 3 is used.

The SPARQL query is first received and parsed by the Jena Semantic Web
framework. Sets of triple patterns are created from the query and handed (via the
Graph API) to the Stratustore. The Stratustore then groups the triple patterns
by subject. The grouping is done to take advantage of the entity oriented schema,
which is used to store the triples inside SimpleDB. Each pattern group can be
combined if the single patterns ask about the same subject. One SELECT query
is created for each group of triple patterns and all of these are posed in parallel
to the SimpleDB. An example of the conversion of a SPARQL to a SELECT
query is given in figures 4 and 5. The patterns which have the same subject form
a SELECT query. The results of both SELECT queries have to be matched
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Fig. 3. Processing of a SPARQL query inside the Stratustore

against each other after they have been retrieved. It is not possible to compare
two entries inside the SimpleDB. Therefore, two seperate queries are necessary.
Query marshaling, cryptographic signing and remote access are handled by the
Typica Library [10].

In response to these queries the SimpleDB returns the list of items matching
the SELECT queries. In many cases multiple requests must be posed to retrieve
all results for a SELECT query, since the size of responses is limited both in the
number of items returned as well as the overall size of the message. Stratustore
then re-constructs the triples based on the items and performs any necessary
joins to find the variable assignments for the triple patterns and returns these
to the broader Jena Framework.

Finally the Jena Framework applies any needed additional processing - this
includes applying FILTER statements as well as combining graph group pat-
terns, particular to realize the UNION statements. After this processing the
result to the SPARQL query is returned to the user.

@prefix example: <http :// example.org/> .

@prefix country: <http :// downlode.org/rdf/iso -3166/ countries#>

SELECT ?s WHERE {

?s rdf:type example:shirt .

?s example:producedBy ?m .

?m rdf:type example:Producer .

?m example:producesIn country:DE .

}

Fig. 4. Pattern Grouping inside the Stratustore
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SELECT s, example:producedBy FROM products WHERE

rdf:type = "example:shirt"

SELECT s FROM products WHERE

rdf:type = "example:Producer"

INTERSECTION

example:producesIn = "country:DE"

Fig. 5. The aforementioned SPARQL query transformed into SimpleDB SELECT
queries

4 Evaluation

We chose to use the Berlin SPARQL Benchmark (BSBM) [11] for evaluation.
This gives us the possibility to compare the figures to other Semantic Web stores
already tested with BSBM.

The BSBM is a benchmark system which allows the evaluation of semantic
data stores that provide a SPARQL endpoint. It is based on an e-commerce use
case which is centered around a set of products that are offered by different
vendors. For the products, there are reviews written by consumers. To query
the generated triples, the BSBM provides a sequence of 12 different SPARQL
queries which simulate a user interaction with this e-commerce scenario.

The benchmark consists of a data generator and a query driver. The generator
can be used to create sets of connected triples of any size. The query driver
constructs queries which fit to the generated triples and executes them on the
SPARQL endpoint. The queries and their constellation in the original benchmark
can be found on the BSBM website at [12]. Response times are measured and
logged.

The complete evaluation system was set up on Amazon’s Elastic Compute
Cloud (EC2) and is sketched in figure 6. One test system is always running on one
EC2 instance (for the evaluation we used the default “Small Instance”, see [13]).
On each test system we ran both a BSBM test driver and the Stratustore.

To make the Stratustore accessible for the BSBM benchmark diver, Joseki3

is used. Joseki is an HTTP server which offers a SPARQL endpoint and accesses
RDF data via its interface to the Jena model. Behind the Jena model stands the
Stratustore which in turn accesses the (remote) SimpleDB. This setup allowed to
easily test the scalability in terms of parallel accesses of multiple users by starting
up multiple instances of the test system. During evaluation it quickly became
apparent, that two BSBM queries (2 and 5) have extremely long and useless
runtimes and for time reasons we excluded them from most evaluation runs. A
third query (query 11) had to be excluded, because it is not yet supported by

3 http://www.joseki.org/
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our implementation. We shortly detail the problem with each of these queries
below.

Fig. 6. The testing environment

Query 2 retrieves the labels of various subjects. The combination of query
patterns of the same subject leads to a reordering of the patterns of this SPARQL
query. This reordering however leads to a certain pattern not being as specific as
before. In particular, not only some but all the labels of the whole database have
to be retrieved. The combination of patterns is needed to take advantage of the
entity oriented data model which the Stratustore is based on. In the particular
case of query 2, the execution time is worsened by this behavior. A weighted
sorting mechanism which prefers more specific query patterns and puts them
first is thought to bring better results here.

Query 5 models a search for products with similar properties in the e-
commerce use case. Naturally, this query touches a lot of data. It uses rather
complex FILTER statements which, in the current implementation, cannot be
mapped into SELECT queries. This forces the Stratustore to locally evaluate
them which shows a bad performance. The solution to decrease the runtime of
query 5 would be to push the interpretation of the FILTERs into the Stratustore.

The third query which had to be excluded from benchmarking is query 11.
It contains a query statement with the the predicate as a variable. A query of
the predicate is currently not supported in the Stratustore. A second index with
predicates as the index key would be needed to cover this kind of query.

5 Results

Both EC2 and SimpleDB are hosted multi-tenancy services under constant de-
velopment - hence it comes as no surprise, that runtimes fluctuated considerable
in an unpredictable way. The fluctuations observed where within one order of
magnitude. This has to be taken into account for the results reported below:
albeit the BSBM benchmark ran over a considerable amount of time, actual
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queries might run half as fast or with double the speed in a way unpredictable
to us.

Garfinkel also experienced the unpredictability of Amazon’s web services [15].
He states that Amazon has a very broad service level agreement with no through-
put guarantees. Thus variations in performance can and do occur on all services.

Uploading a set of 1 million triples with a total size of 86MB, took as long as
144 minutes using only one thread. The use of multi threading speeded this up
by a factor of 4.6. For 10 threads, the upload took 31 minutes to complete. This
means, the transfer rate to the SimpleDB is about 47 kB (or 500 triples) per
second. Adding more threads or more computers does not increase the transfer
rate. This restriction was identified as a limitation of SimpleDB’s acceptance
rate. As mentioned before, bulk uploading is thought to bring an improvement.

A performance analysis of the Stratustore was done by running the query
driver from the BSBM against the Stratustore. The data generator was used
to create a data set of 1 million triples. These triples were then uploaded onto
the Stratustore and queried against. However, we were not able to execute all of
BSBM’s queries against the Stratustore. The aforementioned three queries which
had abnormal runtimes of several minutes were excluded from the benchmarking.

In the following we present the results of 9 different queries being run 50
times against a triple set of 1 million triples on the SimpleDB. The amount of
executed queries per second (QpS) is evaluated. This metric is used in BSBM to
compare the speed of execution of single queries.

In table 1, the runtimes of the different queries are presented. The row in-
dicates which query was evaluated. The column indicates how many instances
of the Stratustore were accessing the SimpleDB at the same time. Up to 20
simultaneous instances were tested. The figures in table 1 show the amount of
queries which were successfully executed per second. The amounts of the single
instances were added up for the total value in each field of the table.

Concurrent instances 1 5 10 20

Query 1 10.84 71.66 157.36 334.75
Query 3 1.99 10.77 22.89 48.27
Query 4 10.66 59.38 127.78 266.44
Query 6 0.28 1.31 3.00 6.24
Query 7 1.32 9.89 30.27 65.47
Query 8 0.81 6.42 22.56 47.01
Query 9 11.45 62.88 160.08 333.3
Query 10 1.94 11.33 27.07 57.2
Query 12 0.02 0.05 0.10 0.20

Table 1. Performance of queries of the Berlin SPARQL Benchmark in queries per
second
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When comparing the query per second rate of single queries to existing RDF
stores like Jena4, Virtuoso5, Sesame6 or Mulgara7, the Stratustore is outper-
formed by multiple orders of magnitude. The authors of the BSBM evaluated
these stores on [14]. The figures in the text used as comparison against the
Stratustore are taken from these tests.

Examining for example query 6 with a QpS rate of 0.28 when executed on
a single instance. The Virtuoso Store using a local database reaches a QpS rate
of 55.0 in the same setting. The Virtuoso Store is about 2 magnitudes faster
than the Stratustore. Comparing the fastest query on the Stratustore shows a
similar outcome. On the Stratustore, query 1 reaches a speed of 10.84 queries
per second, whereas the Virtuoso store processes 202.3 of this query per second.
One of the main reasons for the lower performance of single query execution on
the Stratustore can be found in the overhead of transforming SPARQL queries
into queries of SimpleDB’s SELECT language. The lower expressiveness of Sim-
pleDB’s query language requires a time intense restructuring of queries.

The strength of the Stratustore lies in the ability to easily scale in terms of
users simultaneously accessing it. This can be seen in table 1 as well. Taking
query 1 as an example again, when doubling the number of concurrent users
from 5 to 10, the rate of processed queries per second increases by a factor of
2.2. Again doubling the concurrent accesses to 20, the QpS rate increases by a
factor of 2.1. The Stratustore is able to answer the additional queries with no
performance decrease. All queries are still answered at the same speed, despite
the fact that the number of concurrent queries has doubled. The unexpected
speed up of more than a factor of 2 is due to different loads of the SimpleDB on
different times. Running a whole query set could take up to several hours thus
we could not estimate the impact of different usage loads on the SimpleDB.

The BSBM contains results for the Virtuoso store running 8 and 64 clients
simultaneously. For 8 clients, Virtuoso comes to 286.84 queries per second, while
for 64 clients, the rate reaches 232.94 QpS. As can be seen from table 1, the
Stratustore with 20 concurrent clients is able to reach a higher throughput than
the Virtuoso store with as many as 64 clients. This shows that the Stratustore is
able to provide the throughput of a state-of-the-art RDF store with the potential
of scaling very well in terms of concurrent users.

6 Discussion and Future Work

Is the Stratustore on SimpleDB the “worry free” triple Store that frees the user
from having to worry about the complexities of handling a distributed database;
from having to worry about redundancy, backups and scaling to large data sets
and many concurrent database clients?

4 http://jena.sourceforge.net/
5 http://www.openlinksw.com/virtuoso
6 http://www.openrdf.org
7 http://www.mulgara.org/
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On the plus side it really is an instantly available distributed and replicated
database that can serve many concurrent clients and that is payed for with a
utility pricing model. For queries that make the best use of the SimpleDB data
model it is - for a large number of concurrent accesses - even competitive to state
of the art triples stores running on dedicated servers. For these simple queries
throughput and response time is sufficient for interactive applications.

On the negative side, however, the Stratustore cannot store and query ar-
bitrary RDF data, is very slow on more complex queries and it is inherently
limited for transactional data. The following paragraphs detail these points.

As stated above the Stratustore is currently bound by some of SimpleDBs
limitations. For this reason it currently cannot process queries with variables
in predicate position, cannot store more than 255 triples involving the same
subject and cannot store values larger than 1024 bytes. There are, however,
simple workarounds for each of these limitations that could be implemented in
Stratustore.

A more serious problem is the slow runtime for more complex queries; a
slow runtime caused by joins having to be executed on the client side. Some
optimizations are possible in Stratustore that could speed this up, for example
some filter statements could be “pushed down” into the SimpleDB select queries
- for some cases this could radically reduce the amount of data that needs to be
transferred over the network and that needs to be joined. Another optimization
would be the use of summary graphs or dataset statistics to arrive at better query
plans that avoid transferring too large amounts of data. Finally, if the query
types that will need to be answered are known in advance, then query dependent
indexes (also stored in SimpleDB) could be used to tackle this problem.

Another issue is that the lack of complex database transactions together with
the model of eventual consistency mean that the Stratustore cannot be used for
use cases where transactions are important. In conclusion, the Stratustore is
a solution for use cases that need a simple, robust, cheap, always on, mirrored
database that is accessed concurrently with a read heavy work-load where simple
queries are enough. For other applications the “worry free triple store” will
need either indexes adapted to the applications need or a next generation, more
powerful SimpleDB.

Lastly there is the question whether a “normal” database benchmark is ap-
propriate for a cloud service or whether different benchmarks need to be de-
signed. For example Binnig et al. outline how benchmarking Cloud applications
differs from well established benchmarking systems [16]. Cloud services cannot be
tested in a managed environment where all configuration parameters are under
control. Instead, they are always exposed to unpredictable variations. This loss
of control has to be taken into account when designing a benchmark. They argue
that Cloud services ideally scale in a linear way with the amount of queries be-
cause more resources are added as needed to fulfill the requests. Their suggestion
is to increase the amount of issued queries over time and count the successful
interactions over a given amount of time. We partly followed this scheme by
running different test cycles and increasing the number of clients.
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Abstract. The ramification problem in Artificial Intelligence is concerned with the indirect effects 
of an action. It has been shown in previous work that the ramification problem can be solved with 
the use of integrity constraints and actions representation. In this paper we begin with a quick 
review of the existing Description Logics Languages, and then we describe a Temporal Extension 
of Description Logics, able to represent integrity constraints, temporalized actions and non 
persistent effects. We describe a thorough solution to the ramification problem in Temporal 
Settings expressed in Temporal Description Logics. 

Keywords: Ramification problem, Temporal Description Logics,  Temporalized Actions 

1 Introduction 

The ramification problem, in Artificial Intelligence field, is concerned with the indirect effects of an 
action. In other words, it deals with the problem of representing the consequences of an action. It is a 
hard and ever existing problem, in systems exhibiting a dynamic behavior [11].  

We describe a solution to the ramification problem, by using an example originally presented by 
[11].  However, the example and solution are this time expressed in whole, in Temporal Description 
Logics instead of First Order Logic. In order to accomplish that, we put together features of existing 
Description Logics languages and enrich them to become more specific and deterministic, so as to 
describe the integrity constraints and temporalized actions, as well as the effects of those actions, with 
uttermost clarity. More specifically, we combine features from the language TL-F presented by Artale 
and Franconi [3], along with features of the syntax rules from the Schmiedel proposal  [2]  (also shown 
in figure 4), in order to be able to represent actions and integrity constraints, in Interval Based 
Temporal Description Logics. We are also able to represent the non persistent effects of those actions. 
The effects refer to specific and well defined time intervals. 

In the following section (Section 2), we are going to present the basic syntax of Description Logics, 
along with existing implementations of Description Logic Languages and some Temporal Extensions 
of Descriptions Logics. In Section 3, we present a solution to the ramification problem with the use of 
an example and Temporal Description Logics. We provide algorithms for the production of static rules 
and the evaluation of dynamic and static rules. In the last part of Section 3, there are two theorems 
proving the correctness of the previously presented algorithms. In Section 4, we summarize the 



information provided in this paper, and describe further extensions or applications of the provided 
solution of the ramification problem. 

2 Description Logics Basics and Previous Work 

In this section, we will initially present cases where it is useful to migrate from First Order Logic to 
Description Logics. Then we will describe the basics of Description Logics and mention existing 
Description Logic Languages, as well as Temporal Extensions to Description Logics. 

First Order Logics is nowadays the most common way used for knowledge representation. However 
using FOL (First Order Logic) to represent Knowledge Bases in Relational Databases has proved to be 
inefficient, as FOL has too much expressive power and therefore lacks computational speed and 
efficient procedures. Also, Semantic Networks and frames do not require the whole part of First Order 
Logic. Additionally, the direct use of FOL can have too low inference power for expressing interesting 
theories. Therefore "Description Logics” has been introduced as a formal language for representing 
knowledge and reasoning about it  [7] Description Logics, a structured fragment of FOL, is nowadays 
considered the most important knowledge representation formalism, unifying and giving a logical basis 
to Frame-based systems, Semantic Networks, Object Oriented and semantic data models. Description 
Logics are preferred for their high expressivity and decidability, as well as their reasoning algorithms, 
which always return correct answers [3]. It is shown by [8], that Knowledge Base satisfiability in 
Description Logics (specifically with language ALCQI ) can be EXPTIME-decidable and EXPTIME-
complete. 

The basic types of a concept language are concepts, roles, and individuals (concept names) [5]. A 
concept is a description of a collection of individuals with common properties [13], for example 
“Employee” is a concept. Roles express relations between these individuals of concepts. For example 
“supervise”, represents the relationship between individuals belonging in Employee and Employer 
concepts. Individuals are constants of concepts e.g. “Nick” is a constant of Employee (Nick: 
Employee). The most basic Description Logic Language is ALC (Attributive Language with 
Complements) with syntax: 

ALC ::=   ⊥  |  A  |  ¬C  |  C ⊓ D  |  C ⊔ D  |  ∃ R.C  |  ∀ R.C  . 

The following table represents the formal semantics of ALC and their FOL representation [13]..  
 

 

Fig. 1. Semantics of ALC. 

Let us note that an interpretation I (shown in Figure 1), is a model of a knowledge base Σ, if and 
only if every axiom of Σ, is satisfied by I. Σ logically implies A ⊑ C (written Σ ⊨ A ⊑ C) if AI ⊆ CI for 
every model of Σ: we say that A is subsumed by C in Σ [3]. 
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 Description logics can be extended in order to have a temporal basis. We can have either point-
based temporal description logics (ALCT  [13], CQIus  [12] , ALCQIT  [4], or interval based 
temporal description logics [13].  A way of adding tense logic (point based) to Description Logics was 
introduced by [12], with CQIus, and extended by  [4], with ALCQIT. In the aforementioned 
extensions the temporal operators U (until) and S (Since), along with the temporal operators ��, �–, 
��, �–  were introduced, in order to enhance Description Logics with a temporal dimension.  The 
meaning of those operators (also shown in Figure 2) is: 
 

�� (Sometime in the future) �� C = ⊤U C 

�
– (Sometime in the past) �

– C = ⊤S C 

�� (Always in the future) 
�

– (Always in the past) 
 

 

Fig. 2. Temporal Extension of ALCQI 

A further extension of the languages ALCT, ALCQIT and CQIus was made by [9], with the 
language ALCµ

�
 that defines the new operators �(next time), (previous time), and fixpoint 

concept expressions like µA.C. A language describing Interval Based Description Logics is TDL 
presented by Lutz [10]. Also a powerful temporal description language named DLRus is described by 
[6]. DLRus variants accomplish EXPTIME-complete reasoning, and EXPSPACE-complete 
satisfiability and logical implication [6]. 

Artale and Franconi have also presented a language able to describe both non-temporal feature logic 
and interval temporal networks is TL-F  [3]. The basic types of this language are concepts, 
individuals, temporal variables and intervals. Concepts can be specified to hold at a certain temporal 
variable (or interval). In this way, actions (resp. individual actions) can be expressed in a uniform way 
by temporally related concepts (resp. individuals) [3]. The most common notation used for Temporal 
Interval Relations, used in Interval Based Temporal Description Logics, is the one originally presented 
by Allen in [1],[5], and also shown in Figure 3.  

Concepts expressions are denoted by C, D are built out of atomic concepts denoted by A. Atomic 
features are denoted by f, whereas atomic parametric features are denoted by ⋆g.  Parametric features 
[3], (e.g. ⋆Employee in ⋆Employee: Misdemeanor) plays the role of formal parameter of the action 
mapping any individual action of type Misdemeanor independently from time. Temporal variables are 
denoted by X, Y. When writing C@X it means that concept C holds at time interval denoted by 
variable X. There is also the special temporal variable now (or #) which is used as the reference 
temporal variable of the action (concept). Now variable can be omitted when possible. For example, the 
expression Illegal ⊑ Suspended is the same with Illegal@now ⊑ Suspended@now.  

 



 

Fig. 3.  Allen’s interval relationships. 

 

Fig. 4.  Syntax rules of Schmiedel’s Temporal Extension proposal 

As we have mentioned before in the following section we combine features from the language TL-

F presented by [3], as well as features of the syntax rules from the Schmiedel proposal [2]  (also 
shown in figure 4), in order to represent actions, integrity constraints and non persistent effects, in 
Interval Based Temporal Description Logics. Extensions have been made, in cases where the existing 
Temporal Description Logic Languages, were not specific enough to express actions, integrity 
constraints and time restrictions, with clarity as shown in the following example of Section 3. 
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3 Dealing with the ramification problem with algorithms expressed in 
Temporal Description Logics 

A solution to the ramification problem with the use of Temporal Description Logics is presented in this 
section. Consider the following example from [11]): If a public employee commits a misdemeanor, 
then for the next five months s/he is considered illegal, except if s/he receives a pardon. When a public 
employee is illegal, then s/he must be suspended and cannot take promotion, for the entire time interval 
over which s/he is considered illegal. Also when a public employee is suspended s/he cannot take 
her/his salary until s/he stops being suspended. Each public employee is evaluated for her/his work. If 
s/he receives a bad grade, then s/he is assumed to be a bad employee and s/he cannot take promotion 
until s/he receives a good grade. If s/he receives a good grade, then s/he is assumed to be a good 
employee and s/he takes a bonus if s/he is not suspended. Also, assume that a public worker is not 
illegal, if there does not exist information that proves s/he is illegal, and is not suspended if there does 
not exist information that proves s/he is suspended and takes his/her salary, if there does not exist 
information that proves the opposite. This helps us define the default axioms. As we observe we have 
four actions misdemeanor, take_pardon, good_grade, bad-grade and seven fluents: good_employee, 
bad_employee, illegal, take_salary, take_bonus, take_promotion, suspended. The direct effects of the 
four actions are expressed in propositional form by the following constraints: 
 

FOL Representation of the Integrity Constraints as presented by Papadakis and Plexousakis [11]: 
 

occur(misdemeanor(p), t) ⊃ illegal(p,5m)                                    (1) 
occur(take_pardon(p), t) ⊃ ¬illegal(p, ∞)                                    (2) 
occur(bad_grade(p), t) ⊃ ¬good_employee(p, ∞)                                    (3) 
occur(good_grade(p),t) ⊃ good_employee(p, ∞)                                   (4) 
 

t is a temporal variable and occur(misdemeanor(p), t) means that the action misdemeanor(t) takes place 
at time t. The following integrity constraints describe the indirect effects of the four aforementioned 
actions. 
  
illegal(p, t1) ⊃ suspended(p, t1)                                     (5) 
illegal(p,t1) ⊃ ¬ take_promotion(p, t1)                                    (6) 
suspended(p, t1) ⊃ ¬ take_salary(p, t1)                                     (7) 
¬ good_employee(p, t1) ⊃ ¬ take_promotion(p, t1)                                   (8) 
¬ suspended(p, t1) ∧ good_employee(p, t2) ⊃ take_bonus(p, min(t1,t2))                                (9) 
¬ good_employee(p,t1) ⊃ ¬ take_bonus(p, t1)                                 (10) 
¬ suspended(p, t1) ⊃ take_salary(p, t1)                                  (11) 
 

Temporal Description Logics Representation of the Integrity Constaints: 
 

�� (x) (starts now x) (month x) (= x 5)(⋆Employee: Misdemeanor ⊑ ⋆Employee: Illegal@x)     (1) 
�� (x) (starts now x) (⋆Employee: Take_pardon ⊑ ⋆Employee: ¬ Illegal@x)                                   (2) 



�� (x) (starts now x) (⋆Employee: Bad_grade ⊑ ⋆Employee:¬Good_employee@x)                         (3) 
�� (x) (starts now x) (⋆Employee: Good_grade ⊑ ⋆Employee: Good_employee@x)      (4) 
 

Also we have got the following integrity constraints describing the indirect effects of the 
aforementioned actions. 
 

⋆Employee:Illegal ⊑ ⋆Employee:Suspended          (5) 
⋆Employee:Illegal ⊑ ⋆Employee: ¬Take_promotion          (6) 
⋆Employee:Suspended  ⊑ ⋆Employee: ¬Take_salary          (7) 
⋆Employee: ¬ Good_employee ⊑ ⋆Employee: ¬Take_promotion        (8) 
 �� (x y z)(starts now x)(starts now y)( = z min(x, y)) (⋆Employee: ¬Suspended@x ⊓ ⋆Employee: 
Good_employee@y ⊑ ⋆Employee: Take_bonus@z)          (9) 
⋆Employee:¬Good_employee ⊑ ⋆Employee:¬Take_bonus       (10) 
⋆Employee:¬Suspended ⊑ ⋆Employee: Take_salary        (11) 
 

In Temporal Settings we need to describe the direct and indirect effects of an action, not only in the 
immediately resulting next situation, but possibly for many future situations. In the above example, the 
action Misdemeanor has the indirect effect that the public worker is in suspension in the next five 
months. In these five months the action Good_grade may occur, but even if that happens, the employee 
still cannot take promotion. This means that the world changes situations while the direct and indirect 
effects of some actions still hold. In the above example the dynamic axioms are the (1) – (4), while the 
static axioms are the rest (5) – (11). We have the following default axioms: 
 

�� (x y) (starts now x)(starts now y) (= x 0) (⋆Employee: Illegal@x ⊓ ⋆Employee:¬Illegal@x ⊑ 

⋆Employee: ¬Illegal@y)  
 

�� (x y) (starts now x)(starts now y) (= x 0) (⋆Employee: Take_salary@x ⊓ ⋆Employee: 

¬Take_salary@x ⊑ ⋆Employee: Take_salary@y)  
 

�� (x y) (starts now x)(starts now y) (= x 0) (⋆Employee: Suspended@x ⊓ ⋆Employee: 

¬Suspended@x ⊑ ⋆Employee: ¬Suspended@y)  

a. Algorithms for the Production of Static Rules 

The static rules can be used to deduct the indirect effects of the execution of each action. The indirect 
effects exist due to the presence of integrity constraints. Therefore, it is possible to produce the static 
rules, from the integrity constraints. The following algorithm describes the steps needed for the 
aforementioned production. 
 

1. Transform each integrity constraint in its CNF (conjunctive) form. Now each integrity 
constraint has the form C1⊓ C2 ⊓ C3 … ⊓ Cn 

2. For each i from 1 to n do 
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Assume Ci = F1 ⊔ F2 … ⊔ Fm 

For each j from 1 to m do 
 For each k from 1 to m and k ≠ j do 
  if (Fj, Fk) ∈ I  then 
  R = R ⊔ (¬Fj causes Fk if ⨅Fl), l=1,…,m, l ≠j, k 

3. For each fluent Fk the rules have the following form: 
⨅Fi causes Fk if Φ 
⨅Fi’  causes ¬Fk if Φ’ 

 We change the static rules from the form: 
  G ⊑ Fk  

  K ⊑ ¬Fk  

to the form: 
G’ ⊑ Fk 

K’ ⊑ ¬ Fk  

where 
G’ = G ⊔ (⨅Fi ⊓ Φ) 
K’ = K ⊔ (⨅Fi‘⊓ Φ’) 

4. We replace each rule Gp ⊑ Fp with �� (x)(starts now x)(Gp@x ⊑ Fp@x ) 
 

Now we apply the algorithm to the previous example. First we have to produce the set I. In order to 
do that, we make use of an algorithm presented by Papadakis and Plexousakis [11]. The algorithm is 
however described with Description Logics this time. 
 

1. For each fluent F ∈ Gf, F’ ∈ Kf, where Gf ⊑ Kf is a specified integrity constraint add the pair 
(F, F’) ∈ I. 

2. For each F ∈ Gf , F’ ∈ Kf , where Gf ≡ Kf is a specified constraint do 

• If F can change its truth values as the direct effect of an action, then add (F,F’) in I. If 
F’ can change its truth value as a direct effect of an action then add (F’,F) in I. 

 

All the integrity constraints (IC) have the form A ⊑ B. We have that: 
 (Illegal, Suspended) ∈ I (from IC 5) 
(Illegal, ¬Take_promotion) ∈ I (from IC 6) 
(Suspended, ¬Take_salary) ∈ I (from IC 7)  
(¬Good_employee, ¬Take_promotion) ∈ I (from IC 8) 
(¬Suspended, Take_bonus) ∈ I (from IC 9) 
(Good_employee, Take_bonus) ∈ I (from IC 9) 
(¬Good_employee, ¬ Take_bonus) ∈ I (from IC 10) 
(¬Suspended, Take_salary) ∈ I (from IC 11) 
 

The transformation of integrity constraints in conjunctive normal form (step 1) yields: 
 
⋆Employee: ¬Illegal ⊔ ⋆Employee: Suspended          (5) 



⋆Employee: ¬Illegal ⊔ ⋆Employee: ¬Take_promotion         (6) 
⋆Employee: ¬Suspended ⊔ ⋆Employee: ¬Take_salary         (7) 
⋆Employee: Good_employee ⊔ ⋆Employee: ¬ Take_promotion          (8) 
�� (x y z) (starts now x)(starts now y)(= z min(x,y)) ⋆Employee: Suspended@x ⊔ ⋆Employee: 
¬Good_employee@y ⊔ ⋆Employee: Take_bonus@z         (9) 
⋆Employee: Good_employee ⊔ ⋆Employee: ¬Take_bonus      (10) 
⋆Employee: Suspended ⊔ ⋆Employee: Take_salary       (11) 
 

In step 2 we estimate all causal relationships omitting the atomic parametric feature “⋆Employee” 
for better readability. 
 
R = {Illegal causes Suspended if ⊤,    Illegal causes ¬Take_promotion if ⊤, 
Suspended causes ¬Take_salary if ⊤,   ¬Good_employee causes ¬Take_promotion if ⊤, 
Good_employee causes Take_bonus if ¬Suspended,   
 ¬Suspended causes Take_bonus if Good_employee, 
¬Good_employee causes ¬Take_bonus if ⊤, ¬Suspended causes Take_salary if ⊤}. 
 

In the following step (step 3), we construct the fluent formulas, which make each fluent true. In case 
that there are more than one causal relationships affecting the same fluent, we integrate them in this 
step. Take for example the second and fourth causal relationships from step 2. 
 
R = {Illegal ⊑ Suspended, 
Illegal  ⊔ ¬Good_employee ⊑ ¬Take_promotion, 
Suspended  ⊑ ¬Take_salary, 
¬Suspended ⊓ Good_employee ⊑ Take_bonus, 
¬Good_employee ⊑ ¬Take_bonus, 
¬Suspended ⊑ Take_salary }. 
 

Finally in step 4 (which must be exectued, at each time point, at which the static rules are evaluated) 
we have the following six static rules: 
 
R = {�� (x)(starts now x)(⋆Employee: Illegal@x ⊑ ⋆Employee: Suspended@x), 
�� (x y z)(starts now x)(starts now y)(= z max(x,y))(⋆Employee:Illegal@x ⊔ ⋆Employee: 
¬Good_employee@y ⊑ ⋆Employee: ¬Take_promotion@z), 
�� (x )(starts now x)(⋆Employee: Suspended@x ⊑ ⋆Employee: ¬Take_salary@x),  
�� (x y z)(starts now x)(starts now y)( = z min(x, y)) (⋆Employee: ¬Suspended@x ⊓ ⋆Employee: 
Good_employee@y ⊑ ⋆Employee: Take_bonus@z), 
�� (x)(starts now x)(⋆Employee: ¬ Good_employee@x ⊑ ⋆Employee: ¬Take_bonus@x), 
�� (x)(starts now x)(⋆Employee: ¬Suspended@x ⊑ ⋆Employee: Take_salary@x) }. 
 

In step 4, for each static rule, we find the maximum time that its body is true. For example in the 
second rule, the body is true when Illegal@x ⊔ ¬Good_employee@y is true. This means that we take 
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the maximum of times x, y for which ¬Take_promotion is true. On the fourth rule, the body is true 
when ¬Suspended@x ⊓ Good_employee@y is true. This means that we must take the minimum of 
times x, y. 

b. Algorithms for the Evaluation of Dynamic and Static Rules 

In this section we present an algorithm for the evaluation of rules: 
 

1. After the execution of one action evaluate the dynamic rule which references at this action. 
2. Each time moment do: 

a. Evaluate the default axioms 
b. Repeat until no change occurs 

i. Evaluate all static rules 
ii.  If a fluent �� (a x)(starts a x)(F@x) becomes true after the evaluation of a 

static rule, then set �� (a y)(starts a y)(= y 0)( ¬F@y) (the negation is 
false), for the same time interval a as in the previous rule. 
 

  
Consider the above example with the public worker. We have four dynamic rules (1-4) as we have 

described in the previous section. Also we have produced the six static rules: 
 
�

� (x)(starts now x)(⋆Employee: Illegal@x ⊑ ⋆Employee: Suspended@x), 
�� (x y)(starts now x)(starts now y)(= z max(x,y))(⋆Employee: Illegal@x ⊔ ⋆Employee: 
¬Good_employee@y ⊑ ⋆Employee: ¬Take_promotion@z), 
�� (x )(starts now x)(⋆Employee: Suspended@x ⊑ ⋆Employee: ¬Take_salary@x),  
�

� (x y z)(starts now x)(starts now y)( = z min(x, y)) (⋆Employee: ¬Suspended@x ⊓ ⋆Employee: 
Good_employee@y ⊑ ⋆Employee: Take_bonus@z), 
�� (x)(starts now x)(⋆Employee: ¬ Good_employee@x ⊑ ⋆Employee: ¬Take_bonus@x), 
�� (x)(starts now x)(⋆Employee: ¬Suspended@x ⊑ ⋆Employee: Take_salary@x) 
 

Assume now that we have a public worker (employee) ⋆E, and the initial situation is: 
 

S0 = {�� (x) (starts now x)( ⋆E :¬Take_bonus@x, ⋆E:Take_salary@x,  ⋆E: ¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E:  ¬Good_employee@x, ⋆E: ¬Illegal@x )} 
 

Time starts at 0 and has the granularity of month. Assume that the following actions occur at the 
following time points: 
 
⋆E: Good_grade@2 
⋆E: Misdemeanor@4 
⋆E: Bad_grade@6 



⋆E: Good_grade@8 
⋆E: Misdemeanor@10 
⋆E: Take_pardon@12 
 

At time point 2 the action Good_grade executes. According to the algorithm for the evaluation of 
dynamic and static rules, after the evaluation of dynamic rule (4) we have the following situation: 
 
S’1 = {�� (x) (starts now x) (⋆E:¬Take_bonus@x, ⋆E:Take_salary@x, ⋆E: ¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E: Good_employee@x, ⋆E: ¬Illegal@x)} 
 

As we observe the following static rule will be evaluated: 
 
�� (x y z)(starts now x)(starts now y)(starts now z)(= z min(x,y))(⋆E: ¬Suspended@x ⊓ ⋆E: 
Good_employee@y ⊑ ⋆E: Take_bonus@z) 
 

In the previous rule the (starts now z) could be omitted, as z can be either x or y. Before the action 
execution, time interval x has the maximum value [now, ∞). Therefore it is safe to assume that the 
minimum time interval among x and y is y, as the time interval updated in this rule is y from fluent 
Good_employee. Therefore in the above rule z=y.  
 
S1 = {�� (x) (starts now x) (⋆E: Take_bonus@x, ⋆E:Take_salary@x, ⋆E: ¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E: Good_employee@x, ⋆E: ¬Illegal@x)} 
 

The situation does not change until timepoint 4, when the second action (Misdemeanor) takes place 
and causes Illegal to become true from the next 5 time units. From the algorithm for the evaluation of 
dynamic and static rules, after the evaluation of dynamic rule(1) we have the situation: 
S2’ = {�� (x y) (starts now x)(starts now y)(= y 5) (⋆E :Take_bonus@x, ⋆E:Take_salary@x,  ⋆E: 
¬Take_promotion@x, ⋆E: ¬Suspended@x, ⋆E:  Good_employee@x, ⋆E: Illegal@y)} 
 

As we observe the following static rules will be evaluated: 
 
�� (x)(starts now x)(⋆Employee:Illegal@x ⊑ ⋆Employee:Suspended@x), 
�� (x)(starts now x)(⋆Employee:Suspended@x ⊑ ⋆Employee: ¬Take_salary@x). 
 

x has duration 5 so we get: 
 
�� (x)(starts now x)(= x 5)(⋆Employee:Illegal@x ⊑ ⋆Employee:Suspended@x), 
�� (x)(starts now x)(= x 5)(⋆Employee:Suspended@x ⊑ ⋆Employee: ¬Take_salary@x),  
 

After the evaluation of the static rules we have the situation: 
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S2 = {�� (x y) (starts now x)(starts now y)(= y 5) (⋆E :Take_bonus@x, ⋆E: ¬Take_salary@y,  ⋆E: 
¬Take_promotion@x, ⋆E: Suspended@y,  ⋆E:  Good_employee@x, ⋆E: Illegal@y)} 
 

This situation does not change until the time point 6, when the third action (Bad_grade) executes. 
From the algorithm for the evaluation of dynamic and static rules, after the evaluation of dynamic rule 
(3) we have the situation: 
 
S3’ = {�� (x y) (starts now x) (starts now y)(= y 3) (⋆E :Take_bonus@x, ⋆E: ¬Take_salary@y,  ⋆E: 
¬Take_promotion@x, ⋆E: Suspended@y, ⋆E:¬Good_employee@x, ⋆E: Illegal@y)} 
 

The following static rule: 
 

�� (x)(starts now x)(⋆Employee: ¬Good_employee@x ⊑ ⋆Employee: ¬Take_bonus@x), will be 
evaluated and the situation will become: 
 
S3 = {�� (x y) (starts now x)(starts now y)(= y 3) (⋆E:¬Take_bonus@x,  ⋆E:¬Take_salary@y,  
⋆E:¬Take_promotion@x, ⋆E: Suspended@y, ⋆E: ¬Good_employee@x, ⋆E: Illegal@y )} 
 

This situation does not change until time point 8, when the fourth action (Good_Grade) takes place. 
From the algorithm for the evaluation of dynamic and static rules, after the evaluation of dynamic rule 
(4), we have the situation: 
 
S4‘ = {�� (x y) (starts now x)(starts now y)(= y 1) (⋆E : ¬Take_bonus@x, ⋆E:¬Take_salary@y,  ⋆E: 
¬Take_promotion@x, ⋆E: Suspended@y, ⋆E: Good_employee@x, ⋆E: Illegal@y )} 
 

No static rule is executed. Therefore the situation does not change. At time point 9 no action takes 
place, but the situation changes because the following default axioms hold: 
�� (x y) (starts now x)(starts now y) (= x 0) (⋆Employee: Illegal@x ⊓ ⋆Employee:¬Illegal@x ⊑ 

⋆Employee: ¬Illegal@y)  

 
�� (x y) (starts now x)(starts now y)(= x 0) (⋆Employee: Take_salary@x ⊓ ⋆Employee: 

¬Take_salary@x ⊑ ⋆Employee: Take_salary@y)  
 
�� (x y) (starts now x)(starts now y) (= x 0) (⋆Employee: Suspended@x ⊓ ⋆Employee: 

¬Suspended@x ⊑ ⋆Employee: ¬Suspended@y)  
 

The situation is: 
 

S5’ = {�� (x) (starts now x) (⋆E: ¬Take_bonus@x, ⋆E:Take_salary@x, ⋆E: ¬Take_promotion@x, 
⋆E:¬Suspended@x, ⋆E: Good_employee@x, ⋆E:¬Illegal@x)} 
  

Now the static rule: 



 

�
� (x y z)(starts now x)(starts now y)( = z min(x, y)) (⋆Employee:¬Suspended@x ⊓ ⋆Employee: 

Good_employee@y ⊑ ⋆Employee: Take_bonus@z), is executed with x=y and therefore z=x=y. After 
the evaluation of the rule we have: 
 
S5 = {�� (x) (starts now x) (⋆E: Take_bonus@x, ⋆E:Take_salary@x, ⋆E:¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E: Good_employee@x, ⋆E:¬Illegal@x)} 
 

At time point 10 the action Misdemeanor executes, resulting the situation: 
 
S6’ = {�� (x y) (starts now x)(starts now y)(= y 5)( ⋆E : Take_bonus@x, ⋆E:Take_salary@x, 
⋆E:¬Take_promotion@x, ⋆E:¬Suspended@x, ⋆E: Good_employee@x, ⋆E: Illegal@y)} 
 

�� (x)(starts now x)(= x 5)(⋆Employee:Illegal@x ⊑ ⋆Employee:Suspended@x), 
�� (x)(starts now x) (= x 5)(⋆Employee:Suspended@x ⊑ ⋆Employee: ¬Take_salary@x). 
 

S6 = {�� (x y) (starts now x)(starts now y)(= y 5)( ⋆E: Take_bonus@x, ⋆E: ¬Take_salary@y,  ⋆E: 
¬Take_promotion@x, ⋆E: Suspended@y, ⋆E: Good_employee@x, ⋆E: Illegal@y)} 
 

The last action (Take_pardon) occurs at time point 12. The new situation is 
 

S7’ = {�� (x y) (starts now x)(starts now y)(= y 3)(⋆E : Take_bonus@x, ⋆E: ¬Take_salary@y,  ⋆E: 
¬Take_promotion@x, ⋆E: Suspended@y, ⋆E: Good_employee@x, ⋆E:¬Illegal@x)} 
 

Finally the situation changes again at time point 15, because the following default axioms hold: 
 

�� (x y) (starts now x)(starts now y)(= x 0) (⋆Employee: Take_salary@x ⊓ ⋆Employee: 

¬Take_salary@x ⊑ ⋆Employee: Take_salary@y)  
 

�
� (x y) (starts now x)(starts now y) (= x 0) (⋆Employee: Suspended@x ⊓ ⋆Employee: 

¬Suspended@x ⊑ ⋆Employee: ¬Suspended@y)  
 

Now the situation is: 
 

S8 = {��(x) (starts now x) (⋆E : Take_bonus@x, ⋆E: Take_salary@x,  ⋆E: ¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E: Good_employee@x, ⋆E: ¬Illegal@x)} 
 

This is the end of execution. As we observe from the set R, for each pair (F, ¬F) it holds that GF ⊓ 
KF ≡ FALSE, when GF ⊑ F and KF ⊑ ¬F. More specifically the set of static rules is: 
 

R = {�+ (x)(starts now x)(⋆Employee: Illegal@x ⊑ ⋆Employee: Suspended@x), 

�
+ (x y z)(starts now x)(starts now y)(= z max(x,y))(⋆Employee:Illegal@x ⊔ ⋆Employee: 

¬Good_employee@y ⊑ ⋆Employee: ¬Take_promotion@z), 
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�� (x )(starts now x)(⋆Employee: Suspended@x ⊑ ⋆Employee: ¬Take_salary@x),  
�� (x y z)(starts now x)(starts now y)( = z min(x, y)) (⋆Employee:¬Suspended@x ⊓ ⋆Employee: 
Good_employee@y ⊑ ⋆Employee: Take_bonus@z), 
�� (x)(starts now x)( ⋆Employee: ¬ Good_employee@x ⊑ ⋆Employee:¬Take_bonus@x), 
�� (x)(starts now x)(⊥ ⊑ ⋆Employee:¬Suspended @x), 
�� (x)(starts now x)(⊥ ⊑ ⋆Employee: Take_promotion@x) 
�� (x)(starts now x)(⊥ ⊑ ⋆Employee: Illegal@x) 
�� (x)(starts now x)(⊥ ⊑ ⋆Employee:¬Illegal@x) 
 }, where ⊥ is the symbol for FALSE. 
 

As we observe, for the fluent that there is not a static rule, we add the rule FALSE ⊑ F, because they 
cannot become true by static rules, but only by dynamic rules (this means that the truth value changes 
only as the direct effect of some action). Now we have: 
 

�� (x y)(starts now x)(starts now y)( (⋆Employee: ¬Suspended@x ⊓ ⋆Employee: 
Good_employee@y) ⊓ ⋆Employee:¬Good_Employee@x) for (Take_bonus, ¬Take_bonus) 
 

�� (x y)(starts now x)  (⋆Employee: Suspended@x ⊓ ⋆Employee: ¬Suspended@x) for (Take_salary, 
¬Take_Salary) 
 

�� (x)(starts now x)(⋆Employee:Illegal@x ⊓ ⊥) for (Suspended, ¬Suspended) 
 

�� (x y)(starts now x)(starts now y)((⋆Employee:Illegal@x ⊔ ⋆Employee: ¬Good_employee@y) ⊓ 
⊥) for (Take_promotion, ¬Take_promotion) 
 

⊥ ⊓ ⊥ for (Illegal, ¬Illegal) 
 

This assumption Gf ⊓ Kf ≡ ⊥ is very important in order to ensure that, always after the execution of 
action there is a consistent situation. Now we show with an example, that if this assumption does not 
hold, the situation is not consistent after the execution of some sequence of actions. 

Consider the above example with the public worker and assume that there is another integrity 
constraint specifying that when a public worker is Good_employee, then s/he takes promotion. Now the 
set of static rules is: 
 

R = {�� (x)(starts now x)(⋆Employee:Illegal@x ⊑ ⋆Employee:Suspended@x), 
�� (x y z)(starts now x)(starts now y)(= z max(x,y))(⋆Employee:Illegal@x ⊔ ⋆Employee: 
¬Good_employee@y ⊑ ⋆Employee: ¬Take_promotion@z), 
�� (x )(starts now x)(⋆Employee:Suspended@x ⊑ ⋆Employee: ¬Take_salary@x),  
�� (x y z)(starts now x)(starts now y)( = z min(x, y)) (⋆Employee: ¬Suspended@x ⊓ ⋆Employee: 
Good_employee@y ⊑ ⋆Employee: Take_bonus@z), 
�� (x)(starts now x)(⋆Employee: ¬ Good_employee@x ⊑ ⋆Employee: ¬Take_bonus@x), 
�

� (x)(starts now x)(⋆Employee: ¬Suspended@x ⊑ ⋆Employee: Take_salary@x), 
�� (x)(starts now x)(⋆Employee: Good_employee@x ⊑ ⋆Employee: Take_promotion@x) 



 }. 
 

As we observe for the pair (Take_promotion, ¬Take_promotion), the above assumption does not 
hold, because 
 

�� (x)(starts now x)(starts now y)(Good_employee@x ⊓ (Illegal@x ⊔ ¬Good_employee@y )) can 
be true when Good_employee ⊓ Illegal holds.  
 

Assume now that we have a public worker ⋆E and the initial situation is: 
 

S0 = {�� (x) (starts now x) (⋆E:¬Take_bonus@x, ⋆E:Take_salary@x, ⋆E:¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E:¬Good_employee@x, ⋆E:¬Illegal@x)} 
 

As we have mentioned before, x has the maximum value possible for a future time interval which is 
[now, ∞). Assume that the following actions occur at the following time points, assuming time starts at 
0 and time granularity is that of months.  
 

Misdemeanor@4 
Good_grade@6 
 

At time point 4 after the execution of the action Misdemeanor we have the situation: 
 

S1’ = {�� (x) (starts now x) (⋆E:¬Take_bonus@x, ⋆E:Take_salary@x, ⋆E: ¬Take_promotion@x, ⋆E: 
¬Suspended@x, ⋆E: ¬Good_employee@x, ⋆E: Illegal@x)} 
 

After the evaluation of the static rules we have: 
 

S1 = {�� (x) (starts now x) (⋆E:¬Take_bonus@x, ⋆E:¬Take_salary@x, ⋆E: ¬Take_promotion@x, 
⋆E: Suspended@x, ⋆E: ¬Good_employee@x, ⋆E: Illegal@x)} 

 
At time point 6, after the execution of the action Good_grade we have the situation: 

 

S2’ = {�� (x) (starts now x) (⋆E:¬Take_bonus@x, ⋆E:¬Take_salary@x, ⋆E:¬Take_promotion@x, 
⋆E: Suspended@x, ⋆E: Good_employee@x, ⋆E: Illegal@x)} 

Now the static rule ��(x)(starts now x)(⋆Employee: Good_employee@x ⊑ ⋆Employee: 
Take_promotion@x) must be evaluated, and after that Take_promotion@x must hold. But if 
Take_promotion@x holds, then we must examine if the static rule ��(x y z)(starts now x)(starts now 
y)(= z max(x,y))(⋆Employee: Illegal@x ⊔ ⋆Employee:¬Good_employee@y ⊑ 
⋆Employee:¬Take_promotion@z), must be evaluated. We observe that we must evaluate this static rule 
as well. As we see, those two static rules will be evaluated one after the other for ever (infinitely). This 
means that the situation is not consistent. This happened because there is a mistake in the integrity 
constraints, and therefore the above assumption does not hold. The algorithm can run without the above 
assumption, but we must determine the preconditions of each action, in order to avoid the above 
problem. We have proved the following theorems: 
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Theorem 1: Each time unit, the algorithm is terminated at a finite number of steps. 
Theorem 2: The above algorithm always returns a legal situation. 

4 Conclusion 

In this paper we have presented the basics of Description Logics, as well as several approaches to 
Temporal Description Logics found in Literature. We also presented a Temporal Description Logics 
representation, used in a thorough example to come up with a solution to the ramification problem in 
Temporal Settings. In order to accomplish that, we present algorithms that utilize Integrity constraints 
along with static and dynamic rules, all expressed in Temporal Description Logics. In this particular 
example time intervals are not only variables but can have enumerated values, in contrast with most 
examples found in Literature.  

As we showed it is possible to deal with the ramification problem with rules and algorithms 
expressed in whole in Temporal Description Logics. Our implementation can also work with actions 
taking place in the past, by applying the same algorithms to evaluate static and dynamic rules and to 
come up with a consistent situation. The Temporal Description Logics representation and algorithms 
we presented, could also work with non instant actions (actions with duration). 
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Abstract. Practical scalability of reasoning is an important premise
for the adoption of semantic technologies in a real-world setting. Many
highly effective optimizations for reasoning with expressive OWL on-
tologies have been invented and implemented over the last decades. This
paper describes our approach for concurrent computation of the nonde-
terministic choices inherent to the OWL tableau reasoning procedure for
SHIQ. We present the architecture of our parallel reasoner and briefly
discuss our prototypical implementation as well as future work.

Key words: OWL, Reasoning, Parallelization

1 Motivation

Tableaux-based algorithms have shown to be an adequate method in order to
implement OWL reasoning services for many practical use-cases of moderate
size. However, scalability of OWL reasoning is still an actual challenge of DL
research. Recent optimizations have shown significant increase in speed for an-
swering queries with respect to large volumes of individual data under specific
conditions. For instance, the KAON2 [1] system achieves excellent performance
for reasoning with large volumes of individuals by a clever transformation of
OWL into disjunctive Datalog unless there are cardinality restrictions. A recently
proposed variant of the tableau algorithm [2] has shown some speed-ups for at
least certain kind of ontologies within the HermiT reasoning system. SHEER,
a different, sound but incomplete approach [3] tries to reason with a condensed
version of the data but is not applicable in the presence of nominals. The CB
system implements a consequence driven approach [4] which is theoretically op-
timal at least for the Horn-fragment of SHIQ. The bottom line is that almost
all optimizations typically do come with some restriction in expressivity. This,
however, adds another critical dimension to developers of semantic applications
in that they need to hit the right language fragment which hopefully suits their
needs but also comes with a powerful reasoning engine.

On the other hand, modern CPU’s typically pool more than one processing
unit on a single chip. Recent consumer desktops even come with two quad-core
processors. However, research into reasoning engines which distribute their work
load in such a setting just has started ([5, 6]). Clearly, parallel computation
can only reduce processing time by a factor which is determined by the available
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processing units but has the potential of being applicable without any restriction
especially to the most “costly” cases.

On a high level there are at least two different approaches for parallelizing
reasoning:

Reasoner level. Refers to the approach where the system runs independent
instances of the reasoner procedure to solve some service task. For instance,
computation of the class hierarchy can be delegated to a set of reasoner
instances each of which check consecutively for subsumption of two classes.

Proof level. Aims at parallelizing the reasoning procedure itself by concurrent
computation of inherently independent proof steps.

Our approach follows the proof level strategy because of its sophisticated tun-
ing and optimization options. The reasoner level approach, by contrast, is a
naive kind of parallelization whose synchronization interval is more or less un-
predictable and therefore far from optimal. For instance, the efficient compu-
tation of the concept hierarchy should exploit previous subsumption results. In
the worst case the reasoner level approach has to compute some tests multiple
times due to inherent poor synchronization possibilities.

This paper describes how to parallelize the well-known tableau algorithm
used within reasoning systems such as RacerPro, FaCT++, or Pellet. Paral-
lelizing the nondeterministic choices within the standard DL tableau procedure
has several advantages. First of all, nondeterminism is inherent to the tableau
algorithm due to logical operators such as disjunction, at-most, or qualified car-
dinality restrictions. The generated alternatives from these expressions are com-
pletely independent of each other and can be computed concurrently. In case of
a positive result the other sibling threads can be aborted. The parallel compu-
tation of nondeterministic alternatives also makes the algorithm less dependent
on heuristics which typically choose the next alternative to process. A bad guess
within a sequential algorithm inevitably will lead to a performance penalty. A
parallel approach has the advantage of having better odds with respect to at
least one good guess.

In the following we present our framework for distributed tableaux proofs,
describe the status of our implementation and comment on first result as well
as discuss future work.

2 An Approach for Parallelizing DL Tableaux Proofs

Our approach aims at parallelizing the sequential algorithm proposed in [7] for
ALCNHR+ ABoxes with GCIs, enhanced with inverse roles and qualified car-
dinality restrictions – referred to as SHIQ – and extends our previous work
dealing with a parallel SHN reasoning system [8]

Every standard reasoning task can be reduced to a corresponding ABox un-
satisfiability problem. A tableau prover will then try to create a model for this
ABox. This is done by building up a tree (the tableau) of generic individuals
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ai (the nodes of the tableau) by applying tableaux expansion rules. Tableaux
expansion rules either decompose concept expressions, add new individuals or
merge existing individuals.

2.1 Non-Determinism within SHIQ

The most obvious starting point for parallel proof processing are the nondeter-
ministic tableaux rules. Nondeterministic branching yields to multiple alterna-
tives, which can be seen as different possible ABoxes to continue reasoning with.
Within SHIQ there are three inherent nondeterministic rules:

The disjunction rule. If for an individual a the assertion a : C tD is in the
ABox, then there are two possible ABoxes to continue with: either with C
or with D.

The number restriction merge rule. The at-most restriction results in non-
determinism, if there are m r-successors in an ABox as well as an at-most
restriction (≤ n r) and it holds that m > n. In such a situation the m ex-
isting successors need to be merged to at most n r-successors. In the worst
case this requires to check for all possible m on n partitions.

The choose rule. For an ABox with the qualified number restriction (≤ n r.C)
the algorithm has to add either C or ¬C to any r-successor.

As there are no dependencies between the alternatives generated by the rules
above. Consequently they can be evaluated within parallel threads indepen-
dently.

2.2 Work Pool Architecture

In order to enable parallelism without recursively creating an overwhelming num-
ber of threads, we decided to adopt a work pool design as shown in Figure 1. A
work unit with a fixed number of work executors is generated at the start of the
tableau proof. This parametrizable number typically will be equal to or less than
the number of available processing units. These executors have synchronized read
access to a common queue of jobs (i.e. the ABoxes to evaluate). On start, the
tableaux root node (the original query ABox) is send from a superordinate work
distributor to a work unit (cf. step A of Fig. 1).

The unit’s work controller will add this work package to the units work queue
(step 1). The controller then starts it’s executors and one of them will fetch the
initial job (step 2). During processing the executors have concurrent read as
well as synchronized write access to two global caches (step 3). In case of a
nondeterministic rule application an executor will generate the necessary alter-
native ABoxes by extending the preceding ABox (step 4). This work package
is prioritized and submitted to the corresponding work queue. The next avail-
able executor will fetch the most prioritized work package from the pool. The
executors also report any proof relevant information such as satisfiability results
to the managing work controller, which then will control other executors when
appropriate (step 4).
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Fig. 1. Component interaction within work pool design of parallel reasoner.

The work controller itself gives notice to the work distributor in case

i) an ABox that represents a complete tableau is found, or

ii) no satisfiable alternative was found and there are no alternatives left to
process.

The work distributor of our system architecture is designed to be able to
coordinates more than one work unit. For instance, in case of an empty work
queue of one unit the distributor will level the queues of its units such that there
is no idle unit as long as there are work packages to process.

So far the design is tailored to a SMP (symmetric multi processor) architec-
ture, where all processing cores have access to one main memory. However, our
approach also allows for distribution over many computing systems. In such a
setting multiple work distributors can coordinate their work between each other.

An important decision in this design is the choice of the units work pool
organization. The commonly used queue is unsuitable in this setting as it pro-
motes a breadth-first style evaluation order. Thus, ABoxes which were created
earlier (generated by fewer applications of nondeterministic rules) are preferred,
and the discovery of complete ABoxes is delayed. The usage of a stack would
not reliably lead to a depth-first oriented processing order either, because several
executor share one pool and push new work package when the occur.
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We therefore have chosen to use a priority queue in order to be able to
explicitly influence the processing order. We use a simple heuristic to control the
processing order:

– The priority of the original ABox is set to 0.
– ABoxes generated from an ABox with priority n are given the priority n+1.

This allows for a controlled depth-first oriented processing order. More sophis-
ticated heuristics or even some sort of A∗-algorithm would also be possible. For
example, FaCT++ also utilizes a priority queue for its ToDo list [9], weighting
tableaux rules with different priorities.

2.3 Implementation Status and Future Work

The architecture as described above has been implemented in C++ utilizing
the Qt libraries1. Qt allows for platform independent development and supports
parallel processing via dedicated thread libraries. So far we only have a reasoner
core in the sense that there is a SHIQ proof procedure only. However, we plan
to build a complete reasoning system by adding the well-known pre-processing
mechanisms (such as GCI absorption) and inference services (such as taxonomy
computation, basic asks, etc.). Initial benchmarks also have revealed encouraging
results which are planned to be published very soon.
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Abstract. We propose a method for consolidating entities in RDF data
on the Web. Our approach is based on a statistical analysis of the use
of predicates and their associated values to identify “quasi”-key proper-
ties. Compared to a purely symbolic based approach, we obtain promising
results, retrieving more identical entities with a high precision. We also
argue that our technique scales well—possibly to the size of the current
Web of Data—as opposed to more expensive existing approaches.

1 Introduction

In a distributed and collaborative environment like the current World Wide Web,
there can be a lot of redundancy across data sources. While redundancy in-
creases noisy or unnecessary information, it can also be an advantage, in the
sense that two descriptions of the same thing can mutually complete and comple-
ment each other. However, identifying the same thing is not a straight-forward
task at all, since different identifiers are used for equal entities scattered across
different datasets on the current Web of Data.

In the Semantic Web, identical entities can be made explicit by asserting a
owl:sameAs (resp. owl:equivalentClass, owl:equivalentProperty) relations
between instances (classes, properties, resp.). Entity consolidation on the Se-
mantic Web – as we view it here – thus boils down to the task of identifying
owl:sameAs relations between instances which are not explicitly related. In the
literature, this task is also sometimes referred to as “record linkage” [1], “dupli-
cate identification” [2], “object consolidation” [3], “instance matching” [4], “link
discovery” [5, 6], or “Co-reference resolution” [7].

In this paper, we define techniques for entity consolidation that take advan-
tage of statistical information about the way predicates are used throughout the
Web of Data in order to assess whether these predicates, along with the values
associated with them, are good candidate for identifying instances or, conversely,
discriminating them. For the moment, our technique relies on data described in
terms of overlapping vocabularies, i.e. sharing common identical properties; as we
focus on scale, we have decided for a deliberately simple approach.

The idea that we try to automatically simulate with our approach is based on
the following intuitions:

1. we can conclude that two instances are representing the same real-world entity
if they share several common property-value pairs;

? This work is partly funded by Science Foundation Ireland (SFI) project Lion-2
(SFI/08/CE/I1380) and an IRCSET postgraduate scholarship.



2. certain properties are more or less appropriate to disambiguate/consolitate
entities;

3. likewise, certain values of some properties are more or less appropriate to
disambiguate/consolidate entities.

Particularly, we assume that the necessary information to exploit (Item 2) and
(Item 3) can be gathered from statistics about Web data.

As an example, let us consider the case of identifying persons. Two descriptions
of unknown persons are representing the same human individual if they describe
common properties, such as, eye colour, height, gender, name (Item 1). The gender
of a person is usually of limited utility to identify someone, as opposed to the
name or address (Item 2). However, if the name is a very common one, such as
“Sam Smith” in an English-speaking country, the name property is not enough to
identify the person with reasonable certainty (Item 3) and e.g. another property
that is non-dissciminating by itself necessarily, such as the gender for instance,
may again become discriminating.

Interestingly, these three intuitions can be formalised into an algorithm that we
describe in Section 2. Then, we detail its implementation and some improvement
to make the process scalable and more efficient in Section 3. In Section 4, we
describe a preliminary but promising evaluation of our approach, along with some
more general discussion on the feasibility of properly evaluating such a system.
Section 5 presents related work and compare it to our approach. In Section 6,
we conclude wih important issues still to be solved, possible improvements and
future work.

2 Statistical entity consolidation

In this section, we formulate an abstract algorithm for computing a similarity
measure on pairs of RDF terms.

Let us first describe some formal notions used throughout this paper. We
denote RDF terms by U, B and L, i.e. the sets of all URIs, blank nodes, and
literals, respectively. RDF documents are sets of triples 〈s p o .〉 ∈ B ∪U×U×
U ∪B ∪L . For a given RDF document G, we denote by sub(G) (resp. pred(G),
obj(G)) the set of subjects (resp. predicates, objects) appearing in G. We write
RDF documents in the common 1 notation.

Example 1. For illustration purposes, let’s consider three documents crawled from
the Web containing candidate identifiers for consolidation—viz., ex1:SamSmith,
ex2:sam smith and ex3:Sam-Smith—as follows:

ex:SomeDoc dc:creator ex1:SamSmith .
ex1:SamSmith a foaf:Person ; foaf:name "Sam Smith" ;

foaf:gender "male" ; foaf:homepage ex:JSHompage .

1 Turtle.http://www.w3.org/TeamSubmission/turtle/



ex:SomeDoc dc:creator ex2:sam smith .
ex2:sam smith foaf:name "Dr. Sam J. Smith" ;

foaf:homepage ex:JSHompage .

ex:SomeOtherDoc dc:creator ex3:Sam-Smith .
ex3:Sam-Smith a foaf:Person ; foaf:name "Sam Smith" ;

foaf:gender "female" .

A human able to interpret the above notation will quickly discern that ex1:-
SamSmith and ex2:sam smith likely refer to the same person, and that ex3:Sam-
Smith is a separate person. In this case, a human will intuitively understand that
a single document is unlikely to have two authors with the same (first and last)
name, and that two people will rarely share a homepage. Sharing the same name
and the same homepage are both good indicators that the first and second entities
are referring to the same person. However, class membership such as foaf:Person
does not particularly indicates uniqueness. A human will also understand that the
third Sam Smith is female, and that a person usually only has one unique value
for gender—thus, the third entity is distinct from the earlier two.

In the following, we try to formalise the above described intuitions such that
we can implement an algorithm for performing entity consolidation similar to our
fictitious human consumer from this example. A human naturally has the required
experience of the world to draw the above conclusions, whereas a machine does
not; thus, we must first derive a means of identifying properties and property value
pairs which somehow discriminate an entity: e.g., that different entities rarely
have the same value for the foaf:homepage property. We must then provide a
means of translating our knowledge of properties and values into probabilistic
equivalence assertions for entities with shared property-value pairs: e.g., that if
two entities share a homepage, then there is a probability of p that they are the
same. We must further provide a means of aggregating all p values for the same
entity pairs to derive an overall score for an equivalence relation between those
two entities. Finally, following similar trains of thought we should be able perform
disambiguation of entities—again using our statistical knowledge of the usage of
properties—to derive a score indicating the likelihood that two entities are not
equivalent: e.g., that if two candidates initially deemed likely to be equivalent
have a different value for foaf:gender, then they are likely not equivalent after
all. However, in the present paper we only focus on the consolidation part, leaving
disambiguation as future work.

2.1 Web Crawl Dataset

To illustrate the type of results produced in our approach, we use a 20M triple
RDF Web crawl for which we offer statistics and later derive some evaluation.
This dataset was crawled in late January 2010. We also derive some real examples
from the dataset in this section. We refer to this dataset as G20M .



2.2 Property-centric statistics
In this paper, we tackle consolidation by relying purely on the statistical char-
acteristics of properties as observed for a given RDF graph. So, to begin, we
formalise some statistical characteristics of properties and property-value pairs
which approximately quantify how discriminating these are, i.e., to what degree
they “identify” the entity to which they are attached.

Thus, when in what follows we speak of cardinality for example, it is im-
portant to note that we rather intend the notion of an “observed” cardinality—
observed with respect to a given graph—in contrast to, e.g., the cardinality explic-
itly declared within OWL constructs owl:cardinality, owl:minCardinality,
owl:maxCardinality, owl:FunctionalProperty, owl:InverseFunctionalProp-
erty, etc. With this in mind, we now give some preliminary definitions.

Definition 1 (Cardinality). Let G be an RDF document, p be a property used
as a predicate in G and s be a subject in G. The observed cardinality (or simply
cardinality) of p wrt s in G, denoted CardG(p, s), is the cardinality of the set
{o ∈ obj(G) | 〈s p o .〉 ∈ G}.

Example 2. Take the graph GEX of all triples from Example 1; the cardinality
of the property dc:creator with respect to the subject ex:SomeDoc is given as
CardGEX

(dc:creator, ex:SomeDoc) =2.

We see the cardinality as an initial indicator of how suitable a given pair
< p, s > is for discriminating an entity identified by the object. Given a set of
cardinalities for a given property, we can define the straightforward notion of
average cardinality for p as the average of all cardinalities observed for p; viz :

Definition 2 (Average cardinality). Let G be an RDF document, and p be a
property used as a predicate in G. The average cardinality of p, written ACG(p), is
the average of the non-zero cardinalities of p wrt a variable s. Formally, ACG(p) =∑

s∈sub(G) CardG(s,p)

|{s∈sub(G)|〈s p o .〉∈G}| .

Example 3. Again given GEX , the average cardinality of the property dc:creator
is given as ACGEX

(dc:creator) =1.5.

Given a property appearing as a predicate in the graph, the corresponding av-
erage cardinality is necessarily a positive value greater than one. We may view the
average cardinality as roughly corresponding to the probability that two entities
identified by a given object are equivalent if they share a given predicate-subject
pair—more succinctly, we could interpret properties with average cardinalities
close to one as quasi-functional.

Given that RDF graphs preserve direction, we can likewise introduce the dual
notion of inverse cardinality and average inverse cardinality, which intuitively
coincide with the above definitions replacing subject with object; viz., :

Definition 3 (Inverse cardinality). Let G be an RDF document, p a predicate
in G and o an object in G. The inverse cardinality of p wrt o in G is the cardinality
of the set {s ∈ sub(G) | 〈s p o .〉 ∈ G}. This is written ICardG(p, o).



Example 4. Again given GEX , the inverse-cardinality of property foaf:name with
respect to object "Sam Smith" is: ICardGEX

(foaf:name, "Sam Smith") =2.

Definition 4 (Average inverse cardinality). Let G be an RDF document, p a
predicate in G. The average inverse cardinality of p is the average of the non-zero
inverse cardinalities of p wrt a variable o. This is written AICG(p). Formally,

AICG(p) =
∑

o∈sub(G) CardG(p,o)

|{o∈sub(G)|〈s p o .〉∈G}| .

Example 5. Again given GEX , the average inverse cardinality of the property
foaf:name is: AICGEX

(foaf:name) =1.5.

In analogy to the above said, we may view the inverse cardinality as an initial
indicator of how suitable a given < p, o > pair is for discriminating an entity
identified by the subject, and see low average inverse cardinality scores as an
indicator for quasi-inverse-functional properties.

Please note that hereafter, whenever there is no ambiguity, we conveniently
omit the name of the graph in index, writing, e.g., Card(p, s) instead of CardG(p, s).

The above indicators are indeed näıve in terms of quantifying the inverse-
functional/functional nature of a given property, and require further tailoring.

Strangely, the absolute accuracy of the above metrics are contingent on the
consistency of naming for entities—the lack of which is the precise motivation
for the metrics; e.g., if we see that seven distinct subjects—which in actuality
refer to the same book—have a given object-value for the property ex:isbn,
we would unduely punish ex:isbn by deriving a higher score for the average
cardinality. However, we would hope that the more important relative accuracy
of our metrics in a large enough dataset are not so affected—as long as the metrics
for our properties are proportionately affected by inconsistent naming, we are not
so concerned.

In order to remove obvious noise, we must firstly consider the prevalence of
blank-nodes in Linked Data and their effect on our metrics: obviously, by their
very nature blank-nodes cannot have any naming consistency across Web docu-
ments. For example, the social blogging platform hosted on the livejournal.com
domain exports large volumes of FOAF2 data describing users, and only infre-
quently uses URIs to identify entities; users are given unique blank-node identi-
fiers in each document they appear in. Now, e.g., when the same foaf:weblog
object-value is given for the same user in several different documents, the average
inverse cardinality of foaf:weblog is severely and disproportionately increased.
In order to improve our initial näıve metrics, we can begin them by simply ig-
noring blank-node objects when computing average cardinalities and, conversely,
ignoring blank-node subjects when computing inverse average cardinalities. We
denote these adapted metics excluding blank nodes by Card-XB and AIC-XB,
respectively.

Along these lines, in Table 1 we present the average inverse cardinality for the
top five of those properties in our Web crawl which are explicitly declared to be
inverse-functional (i.e. of type owl:InverseFunctionalProperty). Following the

2 http://foaf-project.org



above discussion, we would reasonably expect values close to one; we also show the
corresponding values when blank-nodes are ignored as above. Somewhat confirm-
ing our suspicion, we can observe that, e.g., the AIC for foaf:weblog becomes
more accurate when blank-nodes are ignored. We also note that foaf:mbox still
has a high AIC-XB value due to one source which exports the same foaf:mbox
values for numerous diverse URI subjects.3

IFP Occurrences AIC AIC-XB
foaf:weblog 113,091 1.978 1.007
foaf:mbox sha1sum 74,525 1.039 1.014
foaf:homepage 72,941 1.016 1.004
contact:mailbox 1,272 6.144 1
foaf:mbox 1,113 2.338 2.006

Table 1. Average inverse-cardinalities for the top five instantiated properties asserted
to be inverse-functional.

We provide similar analysis in Table 2, giving average cardinalities for declared
owl:FunctionalProperties. Again we note that the values approximate one, but
we observe that the results are generally less affected by blank-nodes.

FP Occurrences AC AC-XB
foaf:primaryTopic 69,072 1.066 1.065
loc:address 2,540 1 1
loc:name 2,540 1 1
loc:phone 2,540 1 1
foaf:gender 1,513 1.001 1.001

Table 2. Average cardinalities for the top five instantiated properties asserted to be
functional.

Another problem which requires consideration in our metrics is that of incom-
plete knowledge: given the fact that less observations derive a lower AC/AIC score
for a property, we should be more conservative in using less observed properties
for consolidation. Thus, we introduce the notion of an adjusted average cardinal-
ity, where we use a standard credibility formula to dampen averages derived from
relatively few observations towards a more conservative mean value [8].

Definition 5 (Adjusted Average Cardinality). Let p be a property appear-
ing as a predicate in the graph. The adjusted average cardinality of p is then
AAC(p) = AC(p)×n←−p +AC×←−n

n←−p +←−n where n←−p is the number of distinct subjects that

appear in a triple with p as a predicate, AC is the average cardinality for all
predicate-subject pairs, and ←−n is the average number of distinct subjects for all
predicates in the graph.

Note that above, it may be more intuitive to think of n←−p as corresponding to
the number of observed cardinalities used to derive AC(p). The above credibility
3 http://rdfweb.org/2003/02/28/cwm-crawler-output.rdf



formula ensures that for AC values derived from a low number of observations
(n←−p �←−n ), the adjusted AC value is more influenced by the mean AC value than
the observed value AC(p); conversely, when n←−p �←−n , the observed AC(p) value
has more influence. From our dataset, for the AAC we observed a value for ←−n of
3985, and a value for AC of 1.153.

We define Adjusted AIC analogously, where AIC denotes the average cardinal-
ity for all predicate-object pairs and −→n is the average number of distinct objects
for all predicates in the graph. From our dataset, for the AAIC we observed a
value for −→n of 754, and a value for AIC of 6.094.

Example 6. From G20M , for property rel:childOf, AIC(rel:childOf)=1.414
and n−−−−−−−−→

rel:childOf
=74. Then, AAIC(rel:childOf)= 74×1.414+6.094×754

74+754 =5.85: a con-
servative score reflecting the lack of observations for rel:childof.

Taking property foaf:name, AIC(foaf:name)=1.161 and n−−−−−−→
foaf:name

=66,244.
Then, AAIC(foaf:name)= 66,244×1.161+6.094×754

66,244+754 =1.293: a more confident score
reflecting the wealth of observations for foaf:name.

2.3 Computing confidence for entity equivalences

We now want to use the cardinalities, inverse cardinalities, AAC and AAIC val-
ues of properties and values that are shared by two entities to derive some score
indicating the likelihood that those two entities are equivalent; referring back
to our running example, the instances ex1:SamSmith and ex2:sam smith share
the object-value ex:JSHomepage for property foaf:homepage and the subject-
value ex:SomeDoc for the property dc:creator—similarly, ex1:SamSmith and
ex3:Sam-Smith share the object-value "Sam Smith" for property foaf:name.
To do this, we need a metric which combines the (inverse) cardinality and the
AA(I)C score for a given property-value pair, where the former value indicates
the “uniqueness” of the value for the property, and the latter value gives a more
general indication of the (inverse-) functional nature of the property.

We start by assigning a coefficient to each pair 〈p, o〉 and each pair 〈p, s〉 that
occur in the dataset, where the coefficient is an indicator of how much the pair
helps determining the identity of an entity. In particular, for the purposes of later
aggregation, we require the coefficient to be a positive value less than one. We
determine the coefficient for a 〈p, s〉 pair as C(p, s) = 1

Card(p,s)×AAC(p) , and the
the coefficient for 〈p, o〉 as C−(p, o) = 1

ICard(p,o)×AAIC(p) .

Example 7. Take GEX ′ as a version of G20M which contains GEX—essentially,
we want to refer to the running example using real statistics from our evaluation.
Take AAICGEX ′(foaf:name)=1.293 as before.

Now, let us speculate that ICardGEX ′(foaf:name, "Sam Smith") = 7, reflect-
ing in this example that “Sam Smith” is somehow a relatively common name.
Then, C−(foaf:name, "Sam Smith") = 1

7×1.293 = 0.11.
Now, speculate that ICardGEX ′(foaf:name, "Dr. Sam J. Smith") = 2, re-

flecting in this example that the name “Dr. Sam J. Smith” is more rare. Then,
C−(foaf:name, "Dr. Sam J. Smith") = 1

2×1.293 = 0.387 .



With coefficients for each property-value pair at hand, we can now derive an
aggregated confidence score for entity equivalences. To this end, we define the
following aggregation function:

Definition 6 (Aggregated Confidence Score). Let Z = (z1, . . . zn) be a non-
empty n-tuple such that Z ∈ [0, 1]n and let max ∈ [0, 1]. The aggregated confidence
value ACS(Z, max) is computed iteratively: starting with ACS0 = 0, then for each
k = 1 . . . n, ACSk = (max−ACSk−1)zk + ACSk−1.

The above confidence function is commutative (wrt. the order of zi, zj) and
produces a value between 0 and max inclusive. Taking max as 1, the main idea is
to view Z as a list of probabilistic scores for a given observation, and that each
successive score ACSk reduces the uncertainty 1 − ACSk−1 by a product of the
current observation zk—we parameterise max for full flexibility of the aggregation
function. Also, the function gives higher weight to more certain observations.
Indeed, take Za = (0.5, 0.5) and Zb = (0.9, 0.1); ACS(Za, 1) = (1 − 0.5) × 0.5 +
0.5 = 0.75 whereas ACS(Zb, 1) = (1− 0.1)× 0.9 + 0.1 = 0.91.

To compute the aggregated confidence score for the equivalence of two entities
e1, e2, we first define the sequence of subject equivalence coefficients se1,e2 =
(se1,e2

1 , . . . , se1,e2
n ) as an ordering of the multiset {C−(p, o) | 〈e1 p o .〉 ∈ G ∧

〈e2 p o .〉 ∈ G}—that is, the coefficients for pairs 〈p, o〉 that appear in a triple
with subject e1 as well as in a triple with subject e2. We define the sequence of
object equivalence coefficients oe1,e2 = (oe1,e2

1 , . . . , oe1,e2
n ) analogously via C(p, s).

Let Ze1,e2 be the concatenation of the sequences se1,e2 and oe1,e2 , that is,
Ze1,e2 represents the confidences derived from the coefficients of all property-value
pairs shared by the two entities. We could now näıvely compute the aggregated
confidence score as ACS(Ze1,e2, 1).

Example 8. Again take GEX ′, where AAICGEX ′(foaf:homepage) = 1.068 and
AACGEX ′(dc:creator) = 1.214. Further, let us assume ICardGEX ′(foaf:homepage,
ex:JSHompage) = 2 and CardGEX ′(dc:creator, ex:SomeDoc) = 2. As before, we
can determine C−(foaf:homepage, ex:JSHompage) = 0.468 and C(dc:creator,
ex:SomeDoc) = 0.412.

Now, taking ex1:SamSmith and ex2:sam smith as candidates for consolida-
tion, we can determine Zex1:SamSmith,ex2:sam smith = (0.468, 0.412), and finally com-
pute ACS(Zex1:SamSmith,ex2:sam smith, 1)=0.687.

However, the above aggregation is still too näıve for Web data in that it
assumes that observations based on property-value pairs are completely indepen-
dent. As a counter-example, we present Figure 1 which shows a real sample taken
from our crawl in which we see two people share some relation to six distinct
subject/object values. We observe a clear correlation between these properties.

Firstly, we must consider that two entities which share at least one value for
a given property are more likely to share subsequent values; thus, we cannot
view the subsequent readings as independent observations, and must take into
account possible correlation: e.g., two people who have co-authored at least one
paper together are more likely to co-author more. Thus, as a counter measure,
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Fig. 1. Real example of inter- and intra-property correlation

for the observed shared property-value pairs for e1 and e2, we first aggregate
the values for each property pk (in each direction) separately using the above
aggregation function: during this aggregation, we set the max value to 1

AC(pk) or
1

AIC(pk) respectively. Thus, for the example presented in Figure 1, we would only
allow, e.g., dc:creator to contribute a total value of 0.824. We then perform the
aggregation function again over the individual scores of all properties (in each
direction).

Aside from correlation for values on a single property, there may also be cor-
relation between different properties—e.g., sub-properties or inverse-properties—
which relate two entities to the same external literal or entity. Thus, we prune our
observations whereby if we have multiple properties connected to the same term,
we keep the property with the lowest AC(p) or AIC(p) value for either direction,
and remove consideration of all other properties.

The above two steps to counter-act “obvious” correlation reduced the aggre-
gated confidence scores for the two entities presented in Figure 1 from 0.969 in the
näıve case, to 0.781. Admittedly, the new confidence is still quite high—one could
further try to detect and account for less obvious forms of correlation such as be-
tween a person’s affiliation, location and co-authors. However, such considerations
are outside of the current more preliminary scope.

3 Implementation

In order to simplify discussion of our implementation, we solely refer to the cal-
culations based on AIC until necessary. Calculations based on AC are directly
analogous, where object and subject are simply swapped.

We wish to see our methods used at scale over Linked Data, thus we attempt
to use scalable operations to implement our statistical analysis: specifically, we
rely mainly on sorts and scans. Data is stored in N-Triples (or possibly N-Quads)
format in a flat GZipped compressed file.

Assuming an input unsorted dataset, our first step is to sort the data according
to the following lexicographic order (using a merge-sort):

(p, o, s)



The data is thus grouped according to common p values, and further according
to common p, o pairs. Thus, we can calculate the inverse-cardinality for each p, o
by means of a scan. Further, by storing the distribution of inverse-cardinalities
observed for a given property, we can similarly compute the average inverse cardi-
nality for each property on the fly. Thus, we perform a single scan of the ordered
data and extract all of the cardinality information needed for the proceeding
steps, as well as the ←−n and AC figures required for the credibility formula.

We can then perform a second scan of the same data, this time using the
statistics produced in the first scan to derive initial confidence scores for each in-
dividual po pair. That is to say, we can use the AIC(p) and ICard(p, o) to compute
C−(p, o) values, and propagate these values as initial indicators of equivalence for
subjects with the same 〈p, o〉. Thus, after the second scan we produce the following
tuples:

(e1, e2, C
−(p, o), p, o,−)

These tuples are written again to a new compressed file (in general N-Triple
form); note that the ‘−’ is simply to indicate direction of the observation.

Applying the exact same process over data ordered by: (p, s, o), we can also
derive tuples of the form:

(e1, e2, C(p, s), p, s, +)

Note that we do not produce reflexive or symmetric versions of the above tu-
ples: for the above tuples, e1 will always be less than e2 with respect to the given
lexicographical order which allows us to halve the set of tuples, while ensuring
consistency in tuple “naming”. Indeed, the production of such tuples is quadratic
with respect to the given input which näıvely could seriously hamper scalabil-
ity we aim for. In order to illustrate this, Figure 2(a) and Figure 2(b) show the
cumulative increase in tuples when considering increasing sizes of “equivalence
classes” derived for increasingly common p, o and p, s pairs respectively. Con-
veniently however, the increased equivalence class sizes corresponds to a higher
inverse-cardinality/cardinality values, which implies that the common 〈p, o〉/〈p, s〉
pairs which produce the larger equivalence classes are in any case useless for con-
solidation in our scenario. For the moment, we implement an arbitrary threshold
and throw away equivalence tuples derived from 〈p, o〉/〈p, s〉 pairs with s/o values
greater than 100.

Finally, both incomplete sets of tuples can then be merge-sorted to produce a
file grouped by e1 and e2. The sorted tuples can then be scanned, with the above
aggregation functions being applied for each 〈e1, e2〉 pair.

We deem the above methods to be relatively scalable—with the caveat of
quadratic equivalence tuples being produced—again, with a sensible threshold,
such explosion of output can be mitigated. In any case, we admittedly have yet
to test our methods with respect to performance or scale on larger datasets with
varying thresholds. For the moment, we focus on some quality evaluation to ensure
that our approach derives some reasonable results.
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Fig. 2. Cumulative increase in tuples when considering increasing sizes of “equivalence
classes” derived for increasingly common p, o and p, s pairs respectively.

4 Quality evaluation

The evaluation of our approach is problematic because there is no existing bench-
mark for consolidation of Web data. We nonetheless tried two different approaches.

Firstly, we extract our own “best-effort” benchmark from our crawl of 20
million triples by the following process:

– we extract asserted owl:sameAs statements and infer additional owl:sameAs
statements using the same technique as in [3]—a single iteration of reason-
ing using owl:FunctionalProperty and owl:InverseFunctionalProperty
assertions;

– we separate all owl:sameAs statements and additionally compute the transi-
tive closure thereof;

– we prune the dataset by keeping only triples which have either a subject or
an object that appears in a owl:sameAs statement;

– again, we discard the owl:sameAs statements which relate an entity for which
we have no information;

– we again finally prune the dataset removing triples for which the subject or
object do not have owl:sameAs statements.

The resulting set of owl:sameAs statements contains 36,134,230 transitively
closed, non-symmetric, non-reflexive (reflecting the nature of the same-as output
of our statistical approach) owl:sameAs statements over 87,586 entities. The eval-
uation data consists of 5,622,898 triples. We view the derived asserted/inferred
owl:sameAs statements as a partial ground-truth for our quality evaluation: please
note that we are aware of the somewhat ironic nature of our evaluation approach—
if we apply our previous work on reasoning, we would achieve a perfect 100% recall
and 100% precision. However, again this evaluation is best-effort, and is intended
in this preliminary analysis to present illustrative statistics about the precision
of our approach in the spirit of a proof-of-concept.



Along these lines, in Figure 3(a) we present the precision of our approach con-
sidering AIC values, AC values, and both values combined. Indeed, our precision
is quite high at even low levels of confidence, reaching roughly 92% at a confi-
dence value of 0.26. However, our approach suffers from deriving a small number
of incorrect equivalences at high confidence. Severe drops in precision are due to
the derivation of large numbers of correct inferences at an exact precision; e.g.,
we derive 630 correct inferences at the precise value of 0.6777389199225334—
all uniformly described entities found in the aforementioned livejournal.com
domain. Thus, once we go above that threshold, the precision severely drops. Es-
sentially, large volume equivalences are derived at lower confidence values, and
incorrect equivalences between entities described in smaller exporters are derived
at higher confidence values. Figure 3(b) is presented for cross-reference, where
the amount of remaining correct inferences drop in correlation with the drops in
precision from Figure 3(a). Interestingly, from Figure 3(a) we can conclude that
considering AIC values alone approximates consideration of both directions.

With respect to recall, we observed a value of about 3% with respect to the
transitively closed ground truth. However, one should note that we do not perform
any transitive closure over the output of our statistically derived equivalences, and
thus it is difficult to derive an adequate recall comparison.
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In our second evaluation, we used our consolidation approach as an instance
matching tool by selecting only the consolidation that matches named terms from
two distinct datasets. This method has the merit of being comparable to other
instance matching algorithms over the reference datasets of the Ontology Align-
ment Evaluation Initiative4. The OAEI offers a well established competition in
the ontology matching community, and an instance matching track was added in
2009. The drawback of this method is that the datasets used are very homoge-
neous (3 sets of bibliographic data) and are using the same terms in a very similar

4 OAEI.http://oaei.ontologymatching.org/



way to each other. Therefore, they are not representative of what is really found
on the Web of Data. The results in Figure 4 shows that we get a much lower recall
than specialised instance matching tools (cf. [9], Fig. 12, p40). We do not consider
that this demonstrate a flaw of our approach. On the contrary, we think that it
shows the limits of evaluating a generic consolidation approach with a specific,
small-scale instance matching dataset. Unfortunately, a solid evaluation standard
for entity consolidation is yet to be devised. Our previous home-made benchmark
is an attempt in that direction. In this experiment, AC did not contribute at all
to the overall confidence, because of the particular morphology of the data.
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5 Related work

In our previous work, we used reasoning (functional properties, inverse functional
properties, cardinality restrictions) to consolidate Web data with limitation both
in terms of precision and recall [3]. Entity consolidation has an older related
stream of research relating largely to databases, with work under the names of
record linkage, instance fusion, and duplicate identification; cf. [1, 10, 11] and a
survey at [2]. Due to the lack of formal specification for determining equiva-
lences, these older approaches are mostly concerned with probabilistic methods.
Bouquet et al. [12] motivate the problem of (re)using common identifiers as one
of the pillars of the Semantic Web, and provide a framework and fuzzy match-
ing algorithms to fuse identifiers. Online systems such as Sig.Ma5, rkbexplorer6,
and ObjectCoref offer on-demand querying for owl:sameAs relations found for a
given input URI, which they internally compute and store. Another related field
which gained more recent attention is Instance matching. Some references include
matching database instances [13], domain-dependent similarity of instances [14,
15], [4], instance matching and linking guided by a “linking language” (Silk) for

5 http://sig.ma
6 http://www.rkbexplorer.com/sameAs/



Linked Data [5]. Also, in 2009, the Ontology Alignment Evaluation Initiative7 has
introduced a new test track on instance matching8.

6 Discussion and conclusion

Indeed, our work is quite preliminary, and there are many open questions. Firstly,
in order for such an approach to be proven useful, we would need to demonstrate
that the statistical approach presented can generate additional equivalence rela-
tions than standard reasoning approaches. Such was not possible given the na-
ture of our evaluation setups. In theory however, we believe that the presented
approach should be able to conclude additional equivalences, and in future work
we would need to devise a means of evaluating such. Similarly, we should also
incorporate reasoning approaches into the current statistical model, developing a
hybrid approach which hopefully generates more equivalences.

Perhaps a more interesting use-case for statistical approaches is for disam-
biguating entities: that is, stating that two entities are different. Such owl:-
differentFrom relations are rarely specified on the Web—they can however be
inferred from, e.g., more common owl:disjointWith assertions. Given a set
of candidate equivalences derived through reasoning, statistical or hybrid ap-
proaches, disambiguation can be applied to improve precision of results; reason-
ing on, e.g., owl:InverseFunctionalProperty assertions is known to be im-
precise [3]—clearly, our approach could also benefit from some disambiguation
post-processing. Indeed, one could consider an iterative approach, where the con-
fidence scores for equivalence and difference are iteratively refined—and statistics
are iteratively made more accurate—until a satisfactory fixpoint.

Further, we would intend to evaluate the performance characteristics of our
approach on larger datasets, with the aim of applying the analysis over a dataset in
the order of a billion triples. Again, our approach is based on a scalable substrate
of sorts and scans, and so we would see this as a feasible goal.

With respect to improving the algorithms presented herein, we would need
to consider more advanced topics. Perhaps the most important is the consider-
ation of the source of data when deriving statistics. The statistics for usage of
properties is heavily influenced by large RDF exporters on the Web. Most of the
incorrect highly-confident equivalences were the result of applying such statistics
over smaller heterogeneous sources. One might argue that there currently is not
enough heterogeneous Linked Data to give enough confidence for such statistical
approaches—the “reasonable ineffectiveness of Linked Data” if you will; however,
we should still attempt to consider some notion of a “dataset” as a grouping of uni-
form RDF data—e.g., published by the same exporter—and consider a weighted
version of our statistics which includes such a concept.

Also, we would have to look at deriving some form of transitive closure over the
‘fuzzy’ equivalences produced to improve recall. The exact nature of such a closure
is the topic for future research. Similarly, detection of some notion of correlation

7 OAEI.http://oaei.ontologymatching.org/
8 Instance data matching. http://www.scharffe.fr/events/oaei2009/



between properties—besides the more obvious cases already discussed—is worthy
of further investigation, and would be useful to ensure more sensible aggregation
of confidence scores. Other topics, such as fuzzy string matching techniques or
string-normalisation pre-processing, would also be worth further analysis.

To summarise, we defined a new approach towards consolidating data in a
very heterogeneous environment (the Semantic Web at large). We have barely
scratched the surface but can already attest that the results are promising.
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