
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

Inconsistent Ontology Diagnosis:
Evaluation

Stefan Schlobach∗, Zhisheng Huang∗, and Ronald Cornet#

(∗Vrije Universiteit Amsterdam, #AMC, Amsterdam)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.6.2(WP3.6)
In this document, we evaluated the framework for inconsistent ontology diagnosis and repair as
introduced in Sekt Deliverable D3.6.1, where we defined a number of new non-standard reasoning
services to explain inconsistences.
The evaluation is done in two ways, first, we study the effectiveness of our proposal in aquali-
tativeway with some practical examples. Secondly, in aquantitative and statisticalanalysis, we
try to get a better understanding of the computational properties of the debugging problem and
our algorithms for solving it.

Keyword list: ontology management, inconsistency dignosis, ontology reasoning

Copyright c© 2006 Department of Artificial Intelligence, Vrije Universiteit Amsterdam

Document Id.
Project
Date
Distribution

SEKT/2005/D3.6.2/v1.0
SEKT EU-IST-2003-506826
January 26, 2006
internal

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe , Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom B̈osser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

In this document we evaluate our logical framework for debugging we had introduced in
Sekt Deliverable 3.6.1. This evaluation is done in two ways: first, we study the effective-
ness of our proposal in aqualitativeway with some practical examples. Secondly, in a
quantitative and statisticalanalysis, we try to get a better understanding of the computa-
tional properties of the debugging problem and our algorithms for solving it.

Instead of providing a wide and shallow evaluation for all types of debugging for all
sorts of languages, we have opted for a very detailed analysis of a particular class of
ontologies, namely the terminological part, and here we even focus on unfoldable ALC
TBoxes. These restrictions have grown out of our own applications, and we have most
experience in these cases. I believe that the lessons we learn can be extended to other
cases.

In the qualititative part we discuss two simple incoherent terminologies to explain
the functionality and particular application scenarios of our debugging framework. This
framework was then applied to two incoherent terminologies which were used at the Aca-
demic Medical Center, Amsterdam, for the admission of patients to Intensive Care units.
This evaluation is described in Chapter 4.

For the statistical parts we conducted three sets of experimments in order to evaluate
the debugging problem and our algorithms and tools. First, we applied our two debuggers
DION and MUPSter on a set of real-world terminologies collected from our applica-
tions and the WWW. Secondly, we translated an existing test-set for Description Logic
satisfiability to an incoherence problem, and finally, we created our own benchmark.

The results are mixed: although debugging is useful in practice, we cannot guarantee
that our tools will calculate debugs in reasonable time. The most important criteria are
the size and complexity of the definitions and the number of modeling errors.

This deliverable partly overlaps with the previous Sekt Deliverable 3.6.1. in order
to make it self-contained. This applies to Chapter 3, which is mostly copied from the
previous Deliverable, and to Chapter 2, which contains mostly known material.

Contents

1 Introduction 3

2 Debugging Inconsistent Terminologies 6
2.1 Logical errors in Description Logic terminologies6
2.2 Framework for debugging and diagnosis7

2.2.1 Model-based Diagnosis .8
2.2.2 Debugging . 9
2.2.3 Heuristics .11

3 Algorithms for debugging and diagnosis 13
3.1 Two algorithms for debugging .13

3.1.1 A top-down approach to explanation13
3.1.2 An Informed Bottom-up Approach to Explanation16

3.2 Calculating terminological diagnoses .20

4 A qualitative evaluation of the framework 25
4.1 Two motivating examples .25
4.2 Applying the framework to real-life terminologies27
4.3 Qualitative evaluation .30

5 Principals of a quantitative evaluation 33
5.1 Evaluating algorithms for debugging and diagnosis33
5.2 Three types of benchmark experiments34

5.2.1 Evaluation with real-world terminologies34
5.2.2 Benchmarking with (adapted) existing test-sets36
5.2.3 Benchmarking with purpose-built test-sets37

6 Experimental evaluation 41
6.1 Experiments to evaluate algorithms for debugging41

6.1.1 Experiments with existing ontologies42
6.1.2 Experiments with existing benchmarks43
6.1.3 Experiments with purpose-build benchmark47

6.2 Experiments to evaluate terminological diagnosis53

1

CONTENTS 2

7 Concluding remarks 56

Chapter 1

Introduction

Ontologies play a crucial role in the Semantic Web (SW), as they allow “intelligent
agents” to share information in a semantically umambiguous way, and to reuse domain
knowledge (possibly created by external sources). However, this makes SW technol-
ogy highly dependent of the quality, and, in particular, of the correctness of the applied
ontology. Two general strategies for quality assurance are predominant, one based on
developing more and more sophisticated ontology modeling tools, the second one based
on logical reasoning. In this paper we will focus on the latter. With the advent of ex-
pressive ontology languages such as OWL and its close relation to Description Logics
(DL), non-trivial implicit information, such as theis-a hierarchy of classes, can often
be made explicit by logical reasoners. More crucially, however, state-of-the art DL rea-
soners can efficiently detect incoherences even in very large ontologies. The practical
problem remains what to do in case an ontology has been detected to be incoherent.

Our work was motivated initially by the development of the DICE1 terminology.
DICE implements frame-based definitions of diagnostic information for the unambigu-
ous and unified classification of patients in Intensive Care medicine. The representation
of DICE is currently being migrated to an expressive Description Logic (henceforth DL)
to facilitate logical inferences. Figure 1.1 shows an extract of the DICE terminology. In
[4] the authors describe the migration process in more detail. The resulting DL terminol-
ogy (usually called a “TBox”) contains axioms such as the following, where classes (like
BODYPART) are translated as concepts, and slots (likeREGION) as roles:

Brain v̇ CNSu∃systempart.NervousSystemu
BodyPartu ∃region.HeadAndNecku ∀region.HeadAndNeck

CNSv̇ NervousSystem

Developing a coherent terminology is a time-consuming and error-prone process.
DICE defines more than 2400 concepts and uses 45 relations. To illustrate some of the

1DICE stands for “Diagnoses for Intensive Care Evaluation”. The development of the DICE terminology
has been supported by the NICE foundation.

3

CHAPTER 1. INTRODUCTION 4

CLASS SUPERCLASS SLOT SLOT-VALUE

BRAIN
BODYPART

CNS
REGION

SYSTEM PART

HEAD AND NECK

NERVOUSSYSTEM

CNS NERVOUSSYSTEM

Figure 1.1: An extract from the DICE terminology (frame-based).

problems, take the definition of a “brain” which is incorrectly specified, among others, as
a “CNS” (central nervous-system) and “body-part” located in the head. This definition
is contradictory as nervous-systems and body-parts are declared disjoint in DICE. Fortu-
nately, current Description Logic reasoners, such as RACER [12] or FaCT [13], can detect
this type of inconsistency and the knowledge engineer can identify the cause of the prob-
lem. Unfortunately, many other concepts are defined based on the erroneous definition of
“brain” forcing each of them to be erroneous as well. In practice, DL reasoners provide
lists of hundreds of unsatisfiable concepts for the DICE TBox and the debugging remains
a jigsaw to be solved by human experts, with little additional explanation to support this
process.

There are two main ways to deal with inconsistenct ontologies. One is to simply avoid
the inconsistency and to apply a non-standard reasoning method to obtain meaningful
answers. In [14, 15], a framework of reasoning with inconsistent ontologies, in which
pre-defined selection functions are used to deal with concept relevance, is presented The
notion of “concept relevance” can be used for reasoning with inconsistent ontologies.

An alternative approach to deal with logical contradictions is to resolve logical mod-
eling errors whenever a logical problem is encountered. In this document, we will focus
on evaluation of thisdebuggingprocess. In Sekt Deliverable 3.6.1 we introduce a frame-
work for debugging and diagnosis, more precisely the notions ofminimal unsatisfiability-
preserving sub-TBoxes(abbreviated MUPS) andminimal incoherence-preserving sub-
TBoxes(MIPS) as the smallest subsets of axioms of an incoherent terminology preserving
unsatisfiability of a particular, respectively of at least one unsatisfiable concept.

An orthogonal view on inconsistent ontologies is based on the traditional model-based
diagnosis (MBD)which has been studies over many years in the AI community [22].
Here the aim is to find minimal fixes, i.e. minimal subsets of an ontology that need to
be repaired or removed to render an ontology logically correct, and therefor usable again.
In Reiter’s terminology, MIPS and MUPS would be minimal conflict sets, which implies
that, technically, calculating diagnosis depends on debugging. Therefore, we focus on the
evaluation of debugging in this document.

There are basically two approaches for debugging, a bottom-up method using the sup-
port of an external reasoner, and a top-down implementation of a specialised algorithm.
In this paper we describe one such approach each, the former based on the systematic
enumerations of terminologies of increasing size based on selection functions on axioms,

CHAPTER 1. INTRODUCTION 5

the latter on Boolean minimisation of labels in a labelled tableau calculus.

Both methods have been implemented as prototypes. The prototype for the informed
bottom-up approach is called DION, which stands for a Debugger of Inconsistent ON-
tologies, the prototype of the specialised top-down method is calledMUPSter. In SEKT
deliverable 3.6.1, we discussed some implementation issue of both these systems, and
provided a basic introduction on how to use the systems for debugging. What is missing
is a detailed evaluation of the quality of the proposed framework, and this paper attempts
to close this gap.

This is done in two ways: first, we first, we study the effectiveness of our proposal in
a qualitativeway with some practical examples. Secondly, in aquantitative and statisti-
cal analysis, we try to get a better understanding of the computational properties of the
debugging problem and our algorithms for solving it.

In the qualititative part we discuss two simple incoherent terminologies to explain
the functionality and particular application scenarios of our debugging framework. This
framework was then applied to two incoherent terminologies which were used at the Aca-
demic Medical Center, Amsterdam, for the admission of patients to Intensive Care units.
This evaluation is described in Chapter 4.

For the statistical parts we conducted three sets of experimments in order to evaluate
the debugging problem and our algorithms and tools. First, we applied our two debugger
DION andMUPSter on a set of real-world terminologies collect from our applications
and the WWW. Secondly, we translated an existing test-set for Description Logic satisfi-
ability to an incoherence problem, and finally, we created our own benchmark.

The results are mixed: although debugging is useful in practice, we cannot guarantee
that our tools will calculate debugs in reasonable time. The most important criteria are
the size and complexity of the definitions and the number of modeling errors.

The research underlying this report was driven by practical needs, as theMUPSter
was implemented to debug the DICE ontology. This means that the top-down method to
calculate MIPS and MUPS is implemented for unfoldableALC TBoxes, only. This im-
plies that this report focuses solely on debugging ofALC terminologies, and evaluates the
methods with under these constraints. An extension to full ontologies in more expressive
languages is left for future research.

Overview This paper is organized as follows. We will first introduce relevant back-
ground to the problem of debugging and the approach we have developed in Chapter 2.
Furthermore we will remind the reader about the implementation of our methods in Chap-
ter 3. This chapter repeats known results from Sekt Deliverable 3.6.1. The qualitative
study of our methods is described in Chapter 4. The largest part of this report is the quan-
titative evaluation of the algorithms for debugging and diagnosis. Here, we first describe
our evaluation method with three different types of evaluation in Chapter 5 and then the
results in Chapter 6. We end this report with some concluding remarks.

Chapter 2

Debugging Inconsistent Terminologies

This chapter deals with debugging and diagnosis of inconsistent Description Logic on-
tologies. Description Logics are a family of well-studied set-description languages which
have been in use for over two decades to formalize knowledge. They have a well-defined
model theoretic semantics, which allows for the automation of a number of reasoning
services.

2.1 Logical errors in Description Logic terminologies

We shall not give a formal introduction into Description Logics here, but point to the sec-
ond chapter of the DL handbook [1] for an excellent introduction. Briefly, in DL concepts
will be interpreted as subsets of a domain, and roles as binary relations. In a terminolog-
ical componentT (called TBox) the interpretations of concepts can be restricted to the
modelsof T . Let, throughout the paper,T = {Ax1, . . . , Axn} be a set of (terminological)
axioms, whereAxi is of the formCi v Di for each1 ≤ i ≤ n and arbitrary conceptsCi

andDi. A TBox is calledunfoldableif the left-hand sides of the axioms (the defined con-
cepts) are atomic, and if the right-hand sides (the definitions) contain no direct or indirect
reference to the defined concept [19].

LetU be a finite set, called the universe. A mappingI, which interpretes DL concepts
as subsets ofU is amodelof a terminological axiomC v D, if, and only if,CI ⊆ DI . A
model for a TBoxT is an interpretation which is a model for all axioms inT . Based on
this semantics a TBox can be checked forincoherence, i.e., whether there areunsatisfiable
concepts: concepts which are necessarily interpreted as the empty set in all models of the
TBox. More formally

1. A conceptA is unsatisfiablew.r.t. a terminologyT if, and only if,AI = ∅ for all
modelsI of T .

2. A TBox T is incoherentif there is a concept-name inT , which is unsatisfiable.

6

CHAPTER 2. DEBUGGING INCONSISTENT TERMINOLOGIES 7

ax1:A1v¬A uA2 uA3 ax2:A2vA uA4

ax3:A3vA4 uA5 ax4:A4v∀s.B u C
ax5:A5v∃s.¬B ax6:A6vA1 t ∃r.(A3 u ¬C uA4)
ax7:A7vA4 u ∃s.¬B

Table 2.1: A small (incoherent) TBoxT 1, whereA,B andC are atomic andA1, . . . , A7

defined concept names, andr ands are atomic roles.

Conceptually, these cases aresimplemodeling errors because we assume that a knowl-
edge modeler would not specify something an impossible concept in a complex way.

Table 2.1 demonstrates this principle. Consider the (incoherent) TBoxT 1, where
A,B andC are atomic andA1, . . . , A7 defined concept names, andr ands are atomic
roles. Satisfiability testing of the TBox by a DL reasoner returns a set of unsatisfiable
concept names{A1, A3, A6, A7}. Although this is still of manageable size, it hides crucial
information, e.g., that unsatisfiability ofA1 depends, among others, on unsatisfiability of
A3, which is in turn unsatisfiable because of the contradictions betweenA4 andA5. We
will use this example later in this paper to explain our debugging methods.

In this chapter we study ways ofexplaining incoherence and unsatisfiability in DL
terminologies, and inconsistency of ontologies by ways of debugging and diagnosis.

2.2 Framework for debugging and diagnosis

In Sekt Deliverable 3.6.1. we introduced a theory of debugging and diagnosis and linked
it to description logic-based systems, in which case a diagnosis is a smallest set of ax-
ioms that needs to be removed or corrected to render a specific concept or all concepts
satisfiable. Orthogonally, we considered the smallest set of axioms that still contained the
logical contradictions.

In this we section describe both methods on the use of minimal conflict sets for ex-
plaining unsatisfiability and incoherence in DL-based ontologies. We will not elaborate
on algorithms to construct such conflict sets, the interested reader is referred to Chapter
3, and to [24],[25] and [26].

We propose to simplify a TBoxT in order to reduce the available information to the
root of the incoherence. More concretely we first exclude axioms which are irrelevant to
the incoherence and then provide simplified definitions highlighting the exact position of
a contradiction within the axioms of this reduced TBox. We will call the former “axiom
pinpointing”, the latter “concept pinpointing”. In this section we will formally introduce
axiom and concept pinpointing for a general TBox without restrictions on the underlying
description logic.

CHAPTER 2. DEBUGGING INCONSISTENT TERMINOLOGIES 8

In our analogy to diagnosis, we consider the ontology to be the system, where the
axioms are the components of the system. Satisfiability of a concept is taken as a mea-
surement, where the system description states that all concepts are satisfiable.

First, we will define minimal conflict sets w.r.t. satisfiability of a concept. Next, we
will define minimal conflict sets w.r.t. coherence of the ontology as a whole. Thereafter
we describe a generalization method as a means of providing focus on those parts of
axioms that lead to unsatisfiability of concepts.

In some situations, ontologies can contain a large number of unsatisfiable concepts.
This can occur for example when ontologies are the result of a merging process of sep-
arately developed ontologies, or when closure axioms (i.e. disjointness statements and
universal restrictions) are added to ontologies. Unsatisfiability propagates, i.e. one un-
satisfiable concept may cause many other concepts to become unsatisfiable as well. As
it is often not clear to a modeler what concepts are the root cause of unsatisfiability, we
also describe a number of heuristics that help to indicate reasonable starting points for
debugging an ontology.

2.2.1 Model-based Diagnosis

The literature on model-based diagnosis is manifold, but we focus on the seminal work of
Reiter [22], and [11], which corrects a small bug in Reiter’s original algorithm. We refer
the interested reader to a good overview in [3]. A more formal description can also be
found in [24].

Reiter introduced a diagnosis [22] of a system as the smallest set of components from
that system with the following property: the assumption that each of these components is
faulty (together with the assumption that all other components are behaving correctly) is
consistent with the system description and observation. For example, a simple electrical
circuit can be defined, consisting of a number of adders. Based on the description of the
system and some input values, one can calculate the output of the system. If the observed
output is different from the expected output, at least one of the components must be faulty,
and diagnoses determine which components could have caused the error.

To apply this definition to a description logic ontology, thesystemis the ontology,
and thecomponentsof the system are the axioms. The concepts and roles in a concept
definition are regarded asinput values, and the defined concepts asoutput values.

If we look at the example ontology from Table 2.1, thesystem descriptionstates that
it is coherent (i.e. all concepts are satisfiable), but theobservationis thatA1, A3, A6, and
A7 are unsatisfiable.

Reiter provides a generic method to calculate diagnoses on the basis of conflict sets
and their minimal hitting sets. A conflict set is a set of components that, when assumed to
be fault free, lead to an inconsistency between the system description and observations.
A conflict set is minimal if and only if no proper subset of it is a conflict set. The minimal

CHAPTER 2. DEBUGGING INCONSISTENT TERMINOLOGIES 9

conflict sets (w.r.t. coherence) for the system in Table 2.1 are{ax1, ax2}, {ax3, ax4,
ax5}, and{ax4, ax7}.

A hitting set H for a collection of sets C is a set that contains at least one element of
each of the sets in C. Formally:H ⊆

⋃
S∈C S such thatH ∩ S 6= ∅ for eachS ∈ C. A

hitting set is minimal if and only if no proper subset of it is a hitting set. Given the conflict
sets above, the minimal hitting sets are:{ax1, ax3, ax7}, {ax1, ax4}, {ax1, ax5, ax7},
{ax2, ax3, ax7}, {ax2, ax4}, and{ax2, ax5, ax7}.

Reiter shows that the set of diagnoses actually corresponds to the collection of mini-
mal hitting sets for the minimal conflict sets. Hence, the minimal hitting sets given above
determine the diagnoses for the system w.r.t. coherence.

In [7] diagnosis is extended by providing a method for computing the probabilities of
failure of various components based on given measurements. Especially in cases where
there are many diagnoses, additional observations (measurements) need to be made in
order to determine the actually failing components. The method provided can also deter-
mine what observation has the highest discriminating power, i.e. needs to be performed
to maximally reduce the number of diagnoses.

2.2.2 Debugging

As previously mentioned the theory of diagnosis is built on minimal conflict sets. But in
the application of diagnosis of erroneous ontologies, these minimal conflict sets play a
role of their own, as they are the prime tools for debugging, i.e. for the identification of
potential errors. For different kind of logical contradictions we introduce several different
notions based on conflict sets, the MUPS for unsatisfiability of a concept, the MIPS for
incoherence of a terminology, and a number of heuristics.

Minimal unsatisfiability-preserving sub-TBoxes (MUPS) In [25] we introduced the
notion of Minimal Unsatisfiability Preserving Sub-TBoxes (MUPS) to denote minimal
conflict sets. Unsatisfiability-preserving sub-TBoxes of a TBoxT and an unsatisfiable
concept A are subsets ofT in which A is unsatisfiable. In general there are several of
these sub-TBoxes and we select the minimal ones, i.e., those containing only axioms
that are necessary to preserve unsatisfiability. A TBoxT ′ ⊆ T is a MUPS ofT if A is
unsatisfiable inT ′, and A is satisfiable in every sub-TBoxT ′′ ⊂ T ′. We will abbreviate
the set of MUPS ofT and A bymups(T , A). MUPS for our example TBoxT 1 and its
unsatisfiable concepts are:

mups(T 1, A1): {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T 1, A3): {ax3, ax4, ax5}
mups(T 1, A6): {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T 1, A7): {ax4, ax7}

CHAPTER 2. DEBUGGING INCONSISTENT TERMINOLOGIES 10

It can be easily proven that each MUPS(T , A) is a minimal conflict set w.r.t. satisfia-
bility of conceptA in TBox T .

As explained in Section 2, a diagnosis is a minimal hitting set for a conflict set. Hence,
from the MUPS, we can also calculate the diagnoses for satisfiability of conceptA in
TBox T , which we will denote∆T ,A.

∆T ,A1 : {{ax1}, {ax2, ax3}, {ax2, ax4}, {ax2, ax5} }
∆T ,A3 : {{ax3}, {ax4}, {ax5}}
∆T ,A6 : {{ax1}, {ax4}, {ax6}, {ax2, ax3}, {ax2, ax5} }
∆T ,A7 : {{ax4}, {ax7}}

Minimal incoherence-preserving sub-TBoxes (MIPS) MUPS are useful for relating
sets of axioms to unsatisfiability of specific concepts, but they can also be used to calculate
MIPS, which relate sets of axioms to incoherence of a TBox (i.e. unsatisfiability of any
concept in a TBox).

In [25] we introduced Minimal Incoherence Preserving Sub-TBoxes (MIPS) as the
smallest subsets of an original TBox preserving unsatisfiability of at least one atomic
concept. The set of MIPS for a TBoxT is abbreviated withmips(T). For T1 we get 3
MIPS:

mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}
Analogous to MUPS, each MIPS(T) is a minimal conflict set w.r.t. coherence of TBox

T . Hence, frommips(T), a diagnosis for coherence ofT can be calculated, which we
denote as∆T . From these definitions, we can determine the diagnosis for coherence of
T 1:

∆T 1 = {{ax1, ax4}, {ax2, ax4}, {ax1, ax3, ax7}, {ax2, ax3, ax7}, {ax1, ax5, ax7},
{ax2, ax5, ax7}}

Generalized MIPS The use of MUPS and MIPS provides a focus on potentially in-
correct axioms by reducing the number of axioms, while retaining unsatisfiability of a
specific concept or incoherence of the ontology as a whole. A further step towards pin-
pointing is to look into the axioms, aiming at determining the concept expressions within
axioms that lead to unsatisfiability.

We will describe a procedural approach to generalization of MIPS. This approach is
comparable to those used in structural subsumption algorithms. The first step is to repre-
sent the axioms in the MIPS in conjunctive normal form, i.e.A v X1 uX2 u . . . uXn,
whereX1 . . . Xn are concept names or concept expressions that do not contain conjunc-
tions. The next step is to minimize the number of conjuncted concept expressions in the
axioms, while retaining incoherence. The resulting axioms provide generalizations of the
concepts from the MIPS, which we will call GMIPS. For the exampleT 1 we get these

CHAPTER 2. DEBUGGING INCONSISTENT TERMINOLOGIES 11

generalized axioms:

GMIPS{ax1, ax2}: { A′
1 v ¬A′ u A′

2 , A′
2 v A′ }

GMIPS{ax3, ax4, ax5}: { A′
3 v A′

4 u A′
5 , A′

4 v ∀s.B′ , A′
5 v ∃s.¬B′ }

GMIPS{ax4, ax7}: { A′
4 v ∀s.B′ , A′

7 v A′
4 u ∃s.¬B′ }

A′
1, A

′
2 andA′

4 provide generalizations of the definitions ofA1, A2 andA4, respec-
tively. The definitions ofA3 andA5 could not be further generalized without losing
incoherence.

2.2.3 Heuristics

Now that we have introduced the basic notion w.r.t. pinpointing, we will also provide
a number of heuristics. These heuristics aim at indicating those axioms that are likely
to be involved in larger numbers of unsatisfiable concepts. As was described earlier,
unsatisfiability of a concept propagates to subsumees of that concept, and to concepts
that use the unsatisfiable concept as the value of an existential restriction. In the example
TBox T 1, unsatisfiability ofA3 is one of the two causes for unsatisfiability ofA1 (asA1

is subsumed byA3). But it is also a cause for unsatisfiability ofA6. Firstly, because
it rendersA1 unsatisfiable, secondly because it renders the conjunctionA3 u ¬C u A4

unsatisfiable, which in turn leads to unsatisfiability of∃r.(A3 u ¬C u A4).

Hence, solving unsatisfiability ofA3 might also lead to satisfiability ofA1 andA6.
In this example,A1 will actually remain unsatisfiable due to conflicting definitions ofA1

andA2.

MIPS-weights Every MIPS is a subset of one or more MUPS. One indication of the
effect of propagation is the number of MUPS that a MIPS is a subset of. The higher this
number, the more likely it is that the axioms in the MIPS are the cause of unsatisfiability
for more concepts.

We define the MIPS-weight as the number of MUPS of which a MIPS is a subset.

In the example ontologyT 1 we found six MUPS and three MIPS. The MIPS{ax1,
ax2} is equivalent to one of the MUPS forA1, {ax1, ax2}, and a proper subset of a MUPS
for A6, {ax1, ax2, ax4, ax6}. Hence, the weight of MIPS{ax1, ax2} is two. In the same
way we can calculate the weights for the other MIPS: the weight of{ax3, ax4, ax5} is
three, the weight of{ax4, ax7} is one.

Intuitively, this suggests that the combination of the axioms{ax3, ax4, ax5} may
be the cause of more than one unsatisfiable concept, whereas{ax4, ax7} only leads to
unsatisfiability of one concept,A7.

CHAPTER 2. DEBUGGING INCONSISTENT TERMINOLOGIES 12

Cores MIPS-weights provide an intuition of which combinations of axioms lead to un-
satisfiability. Alternatively, one can focus on the occurrence of the individual axioms in
MIPS, in order to predict the likelihood that an individual axiom is erroneous.

We define cores as sets of axioms occurring in several MIPS. The more MIPS such
a core belongs to, the more likely its axioms will be the cause of contradictions. A non-
empty intersection ofn different MIPS in mips(T) (with n ≥ 1) is called a MIPS-core of
arity n (or simply n-ary core) forT .

For our example TBoxT 1 we find one 2-ary core,ax4. The other axioms in the MIPS
are 1-ary cores.

Pinpoints Pinpoints were introduced in [26], as a computationally attractive alternative
for diagnoses. As calculation of diagnoses is a so-called NP-complete problem (i.e. most
likely not solvable in polynomial time), we use the cores described above to construct a
pinpoint.

Pinpoints are constructed as follows. Take a core{ax} of size 1 with maximal arity.
Then, remove from themips all MIPS containing{ax}. Repeat these steps until there are
no MIPS left. The cores form a pinpoint for the ontology.

For our example TBoxT 1 with mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4,
ax7}} we first take 2-ary core,ax4. Removing the MIPS containing this axiom leaves the
MIPS{ax1, ax2}. Hence, two pinpoints can be defined:{ax4, ax1} and{ax4, ax2}.

A note on terminology In the remainder of this report we will often refer to the cal-
culation of MIPS and MUPS as the process ofdebugging, as opposed to thediagnosis
process, which refers to the calculation of diagnoses in the proper sense of the word.

Chapter 3

Algorithms for debugging and diagnosis

3.1 Two algorithms for debugging

We present two general approaches to calculate explanations: a top-down method, which
reduces the reasoning into smaller parts in order to explain a subproblem with reduced
complexity, and an informed bottom-up approach, which enumerates possible solutions
in a clever way. Both approaches will be represented for terminological reasoning only,
but can, in principal, easily be extended to full ontology debugging.1

3.1.1 A top-down approach to explanation

In order to calculate minimal incoherence preserving sub-terminologies (MIPS) we first
calculate the minimal unsatisfiability preserving sub-terminologies (MUPS) for each un-
satisfiable concept. This is done in a top-down way: we calculate the set of axioms
needed to maintain a logical contradiction by expanding a logical tableau with labels.
This method is efficient, as it requires a single logical calculation per unsatisfiable con-
cept. On the other hand, it is based on a variation of a specialised logical algorithm, and
only works for Description Logics for which such a specialised algorithm exists and is
implemented. At the moment, such a purpose-build method only exists for the DLALC,
and a restricted type of TBoxes, namelyunfoldableones.

Debugging unfoldableALC-TBoxes Practical experience has shown that applying our
methods on a simplified version of DICE can already provide valuable debugging infor-
mation. We will therefore only provide algorithms for unfoldableALC-TBoxes [19] as

1The extension of the bottom-up method is trivial, as we only have to define a new selection function
and systematic enumeration. For the top-down approach things are a bit more complicated, as we now have
analyse forests rather than trees. However, this seems to be a technical rather than a conceptual problem.

13

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 14

(u): if (a : C1 u C2)label ∈ B, but not both(a : C1)label ∈ B and(a : C2)label ∈ B
then B′ := B ∪ {(a : C1)label, (a : C2)label}.

(t): if (a : C1 t C2)label ∈ B, but neither(a : C1)label ∈ B nor (a : C2)label ∈ B
then B′ := B ∪ {(a : C1)label} andB′′ := B ∪ {(a : C2)label}.

(Ax) if (a : A)label ∈ B and(A v C) ∈ T
then B′ := B ∪ {(a : C)label∪{AvC}}.

(∃): if (a : ∃Ri.C)label ∈ B, Ri ∈ NR and all other rules have been applied on all
formulas overa, and if{(a : ∀Ri.C1)label1 , . . . , (a : ∀Ri.Cn)labeln} ⊆ B is
the set of universal formulas fora w.r.t. Ri in B,

then B′ := {(b : C)label, (b : C1)label1∪label, . . . , (b : Cn)labeln∪label}
whereb is a new individual name not occurring inB.

Figure 3.1: Tableau Rules forALC-Satisfiability w.r.t. a TBoxT (with Labels)

this significantly improves both the computational properties and the readability of the
algorithm.

The calculation of MIPS depends on the MUPS only, and we will provide an algorithm
to calculate these minimal unsatisfiability-preserving sub-TBoxes based on Boolean min-
imisation of terminological axioms needed to close a standard tableau ([1] Chapter 2).

Usually, unsatisfiability of a concept is detected with a fully saturated tableau (ex-
panded with rules similar to those in Figure 3.1) where all branches contain a contradic-
tion (or close, as we say). The information which axioms are relevant for the closure is
contained in a simple label which is added to each formula in a branch. Alabelled for-
mula has the form(a : C)x wherea is an individual name,C a concept andx a set of
axioms, which we will refer to aslabel. A labelled branch is a set of labelled formulas
and a tableau is a set of labelled branches. A formula can occur with different labels on
the same branch. A branch is closed if it contains a clash, i.e. if there is at least one pair
of formulas with contradictory atoms on the same individual. The notions of open branch
and closed and open tableau are defined as usual and do not depend on the labels. We
will always assume that any formula is innegation normal form(nnf) and newly created
formulas are immediately transformed. We usually omit the prefix “labelled”.

To calculate a minimal unsatisfiability-preserving TBox for a concept nameA w.r.t.
an unfoldable TBoxT we construct a tableau from a branchB initially containing only
(a : A)∅ (for a new individual namea) by applying the rules in Figure 3.1 as long as
possible. The rules are standardALC-tableau rules with lazy unfolding, and have to be
read as follows: assume that there is a tableauT = {B,B1, . . . , Bn} with n+1 branches.
Application of one of the rules onB yields the tableauT ′ := {B′, B1, . . . , Bn} for the
(u), (∃) and(Ax)-rule,T ′′ := {B′, B′′, B1, . . . , Bn} in case of the(t)-rule.

Once no more rules can be applied, we know which atoms are needed to close a
saturated branch and can construct a minimisation function forA andT according to the
rules in Figure 3.2. A propositional formulaφ is called aminimisation function forA
andT if A is unsatisfiable in every subset ofT containing the axioms which are true in

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 15

if rule = (u) has been applied to(a : C1 u C2)label andB′ is the new branch
return min function(a,B′, T);

if rule = (t) has been applied to(a : C1 t C2)label andB′ andB′′ are the new branches
return min function(a,B′, T) ∧ min function(a,B′′, T);

if rule = (∃) has been applied to(a : ∃R.C)label, B′ is the new branch andb the new variable
return min function(a,B′, T) ∨ min function(b, B′, T);

if rule = (Ax) has been applied andB′ is the new branch
return min function(a,B′, T);

if no further rule can be applied
return:

∨
(a : A)x ∈ B, (a : ¬A)y ∈ B (

∧
ax∈x ax ∧

∧
ax∈y ax);

Figure 3.2:min function(a,B, T): Minimisation-function for the MUPS-problem

an assignment makingφ true. In our case axioms are used as propositional variables in
φ. As we can identify unsatisfiability ofA w.r.t. a setS of axioms with a closed tableau
using only the axioms inS for unfolding, branching on a disjunctive rule implies that we
need to join the functions of the appropriate sub-branches conjunctively. If an existential
rule has been applied, the new branchB′ might not necessarily be closed on formulas for
both individuals. Assume thatB′ closes on the individuala but not onb. In this case
min function(a,B, T) = ⊥, which means that the related disjunct does not influence the
calculation of the minimal incoherent TBox.

Based on the minimisation functionmin function(a, {(a : A)∅}, T) (let us call itφ)
which we calculated using the rules in Figure 3.2 we can now calculate the MUPS forA
w.r.t. T . The idea is to use prime implicants ofφ. A prime implicantax1 ∧ . . . ∧ axn

is the smallest conjunction of literals2 implying φ [21]. As φ is a minimisation function
every implicant ofφ must be a minimisation function as well and therefore also the prime
implicant. But this implies that the conceptA must be unsatisfiable w.r.t. the set of ax-
ioms {ax1, . . . , axn}. As ax1 ∧ . . . ∧ axn is the smallest implicant we also know that
{ax1, . . . , axn} must be minimal, i.e. a MUPS.

From MUPS we can easily calculate MIPS, but we need an additional operation on
sets of TBoxes, calledsubset-reduction. LetM = {T1, . . . , Tm} be a set of TBoxes. The
subset-reductionof M is the smallest subsetsr(M) ⊆ M such that for allT ∈ M there
is a setT ′ ∈ sr(M) such thatT ′ ⊆ T .

Let T be an incoherent TBox with unsatisfiable concepts∆T . A simple algorithm
for the calculation of MIPS forT is then defined through the following equation: Then,
mips(T) = sr(

⋃
A∈∆T mups(T , A)). Checking elements ofmips(T) for cores of max-

imal arity requires exponentially many checks in the size ofmips(T). In practice, we
therefore apply a bottom-up method searching for maximal cores of increasing size stop-
ping once the arity of the cores is smaller than 2.

2Note that in our case all literals are non-negated axioms.

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 16

3.1.2 An Informed Bottom-up Approach to Explanation

In this section we propose an informed bottom-up approach to calculate MUPS by the
support of an external DL reasoner, like RACER. The main advantage of this approach is
that it can deal with any DL-based ontology if it has been supported by an external rea-
soner. Currently there exist several well-known DL reasoners, like RACER and FACT++.
Those external DL reasoners have been proved to be very reliable and stable. They already
support various DL-based ontology languages, including OWL. Thus, by the bottom-up
approach we can obtain an OWL debugger almost for free, although the price is paid for
its performance.

Given an unsatisfiable conceptc and a formula set(i.e., an ontology)T , we can cal-
culate the MUPS ofc by selecting a minimal subsetΣ of T in which c is unsatisfiable
in Σ. We use a similar selecting procedure which has been used in the system PION for
reasoning with inconsistent ontologies[14]. In the PION approach, a selection function
is designed to one which can extend selected subset by checking on axioms which are
relevant to the current selected subset which starts initially with a query. Although the
approach which is based this kind of relevance extension procedure may not give us the
complete solution set of MUPS/MIPS, it is good enough to provide us an efficient ap-
proach for debugging inconsistent ontologies. We are going to report the evaluation of
this informed bottom-up approach in the SEKT deliverable D3.6.2 entitled ”Evaluation
of Inconsistent Ontology Diagnosis”.

Selection Function and Relevance MeasureGiven an ontology (i.e., a formula set)Σ
and a queryφ, a selection functions is one which returns a subset ofΣ at the stepk > 0.
Let L be the ontology language, which is denoted as a formula set. We have the general
definition about selection functions as follows:

Definition 3.1.1 (Selection Functions)A selection functions is a mappings : P(L) ×
L×N → P(L) such thats(Σ, φ, k) ⊆ Σ.

In this approach, we extend the definition of the selection function so that it starts from a
conceptc instead of from a query (i.e., a formulaφ). As we have discussed above, select
functions are usually defined by a relevance relation between a formula and a formula set.
We will use a relevance relation as the informed message to guide the search strategy for
MUPS.

Definition 3.1.2 (Direct Relevance Relation)A direction relevance relationR is a set
of formula pairs. Namely,R ⊆ L× L.

Definition 3.1.3 (Direct Relevance Relation between a Formula and a Formula Set)
Given a direction relevance relationR, we can extend it to a relationR+ on a formula
and a formula set, i.e.,R+ ⊆ L× P(L) as follows:

〈φ,Σ〉 ∈ R+iff there exists a formulaψ ∈ Σ such that〈φ, ψ〉 ∈ R.

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 17

We have implemented the prototype of the informed bottom-up approach. The proto-
type is called DION, which stands for a Debugger of Inconsistent Ontologies. DION uses
a DIG data format as its internal data represenation format. Therefore, in the following,
we define a direct relavance relation which is based on the ontology language DIG.

In DIG, concept axioms has only the following three forms:impliesc(C1, C2),
equalc(C1, C2), anddisjoint(C1, · · · , Cn), which corresponds with the concept impli-
cation statement, the concept equivalence statement, and the concept disjoint statement
respectively.

Given a formulaφ, we useC(φ) to denote the set of concept names that appear in the
formulaφ.

Definition 3.1.4 (Direct concept-relevance)An axiomφ is directly concept-relevant to
a formulaψ, writtenSynConRel(φ, ψ), iff
(i) C1 ∈ C(ψ) if the formulaφ has the formimpliesc(C1, C2),
(ii) C1 ∈ C(ψ) or C2 ∈ C(ψ) if the formulaφ has the formequalc(C1, C2),
(iii) C1 ∈ C(ψ) or · · · or Cn ∈ C(ψ) if the formulaφ has the formdisjoint(C1, · · · , Cn).

Definition 3.1.5 (Direct concept-relevance to a set)A formulaφ is concept-relevant to
a formula setΣ iff there exists a formulaψ ∈ Σ such thatφ andψ are directly concept-
relevant.

For a terminologyT and a conceptc, we can define a selection functions in terms of
the direct concept relevance as follows:

Definition 3.1.6 (Selection function on concept relevance)
(i) s(T , c, 0) = {ψ | ψ ∈ T andψ is directly concept-relevant toc};
(ii)s(T , c, k) = {ψ | ψ ∈ T andψ is directly concept-relevant tos(T , c, k − 1)} for k >
0.

In order to do so, we extend the definition of direct concept relevance so that we
can say something like an axiomψ is direcly concept-relevant to a conceptc, i.e.,
SynConRel(ψ, c). It is easy to see that it does not change the definition of direct rel-
evance relation.

Algorithms We use an informed bottom-up approach to obtain MUPS. In logics and
computer science, an increment-reduction strategy is usually used to find minimal incon-
sistent sets[8]. Under this approach, the algorithm first finds a set of inconsistent sets,
then reduces the redundant axioms from the subsets. Similarlly, a heuristic procedure for
finding MUPS consists of the following three stages:

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 18

Algorithm 3.1: Algorithm formups(T , c)
k := 0
mups(T , c) := ∅
repeat
k := k + 1

until c unsatisfiable ins(T , c, k)
Σ := s(T , c, k)− s(T , c, k − 1)
for all Σ′ ∈ P(Σ) do

for all φ ∈ Σ/Σ′ do
if Σ′ ∪ {φ} 6∈ mups(T , c) then

Σ′′ := s(T , c, k − 1) ∪ Σ′

if c satisfiable inΣ′′ andc unsatisfiable inΣ′′ ∪ φ then
mups(T , c) := mups(T , c) ∪ {Σ′′ ∪ {φ}}

end if
end if

end for
end for
mups(T , c) := MinimalityChecking(mups(T , c))
return mups(T , c)

• Heuristic Extension: Using a relevance-based selection function to find two sub-
setsΣ andS such that a conceptc is satisfiable inS and unsatisfiable inS ∪ Σ.

• Enumeration Processing: Enumerating subsetsS ′ of S to obtain a setS ′ ∪ Σ in
which the conceptc is unsatisfiable. We call those setsc-unsatisfiable sets.

• Minimality Checking : Reducing redundant axioms from thosec-unsatisfiable sets
to get MUPSs.

The following is an algorithm for MUPSs. The algorithm first finds two subsetsΣ andS
of T . Compared withT , the setΣ is relatively small. The algorithm then tries to exhaust
the powerset ofΣ to getc-unsatisfiable sets. Finally, by the minimality checking it obtains
the MUPSs. We can define the minimality checking as a sub-procedure as shown in the
algorithm 3.2.

The complexity of the algorithm 3.1 is exponent to|Σ|. AlthoughΣ is much smaller
thanT , it is still not very useful in the implementation. One of the improvement is to
do pruning. We can check the subsets ofΣ with increasing cardinality of the subsets.
Namely, we can always pick up the subsets with a less cardinality first, (i.e., the power
set ofΣ is sorted). First, set the cardinalityn = 1, namely pick up only one axiomφ in
Σ, check ifc is unsatisfiable in{φ} ∪ s(T , c, k − 1). If ’yes’, then it ignores any superset
S such that{φ} ⊂ S. After all of the subsets with the cardinalityn have been checked,
increasen by 1. Moreover, we can do checking and pruning during the powerset is built.

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 19

Algorithm 3.2: Algorithm for the minimality checking onmups(T , c)
for all Σ ∈ mups(T , c) do

Σ′ := Σ
for all φ ∈ Σ′ do

if c unsatisfiable inΣ′ − {φ} then
Σ′ := Σ′ − {φ}

end if
end for
mups(T , c) := mups(T , c)/{Σ} ∪ {Σ′}

end for
return mups(T , c)

That leads to the algorithm 3.3 in which we use the setS to book thec-satisfiable subsets.

Proposition 3.1.1 (Soundness of the Algorithms MUPS)The algorithms for MUPS
above are sound. Namely, they always return MUPSs.

PROOF. It is easy to see that the conceptc is always unsatisfiable for any elementS
in the setmups(T , c). Otherwise it is never added into the set. The minimality condition
is achieved by the procedure of the minimality checking. Therefore, the algorithms for
MUPSs are sound. 2

Take our running example. To calculatemups(T1, A1), the algorithm first gets the
set Σ = {ax2} = {ax1, ax2} − {ax1}. Thus,mups(T1, A1) = {{ax1, ax2}}. We
can see that the algorithm cannot find thatS1 = {ax1, ax3, ax4, ax5} ∈ mups(T1, A1).
However, it does not change the result of MIPS, because we have a subset{ax3, ax4, ax5}
of S1, which will be inmups(T1, A3). To calculatemups(T1, A6), the algorithm first
gets the setΣ = {ax2, ax5} = {ax1, ax2, ax3, ax4, ax5, ax6} − {ax1, ax3, ax4, ax6}.
Thus,mups(T1, A6) = {{ax1, ax3, ax4, ax5, ax6}}. Again, the algorithm cannot find
that {ax1, ax2, ax4, ax6} ∈ mups(T1, A6). However, it does not affect MIPS, because
{ax1, ax2} ∈ mups(T1, A1). Therefore, the algorithms for MUPSs proposed above are
sound, but not complete. As we have argued above, this informed bottom-up approach is
efficient for inconsistent ontology diagnosis.

Sometimes it is useful to find just a single MUPS by using the relevance relation
without referring to a selection function. Algorithm 3.4 uses the increment-reduction
strategy to find a single MUPS for an unsatisfiable concept, without a selection function.
The algorithm finds a subset of the ontology in which the concept is unsatisfiable first,
then reduces the redundant axioms from the subset.

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 20

Algorithm 3.3: Algorithm formups(T , c) with pruning

k := 0
mups(T , c) := ∅
repeat
k := k + 1

until c unsatisfiable ins(T , c, k)
Σ := s(T , c, k)− s(T , c, k − 1)
S := {s(T , c, k − 1)}
for all φ ∈ Σ do

for all S ′ ∈ S do
if c satisfiable inS ′ ∪ {φ} andS ′ ∪ {φ} 6∈ S then
S := S ∪ {S ′ ∪ {φ}}

end if
if c unsatisfiable inS ′ ∪ {φ} andS ′ ∪ {φ} 6∈ mups(T , c) then
mups(T , c) := mups(T , c) ∪ {S ′ ∪ {φ}}

end if
end for

end for
mups(T , c) := MinimalityChecking(mups(T , c))
return mups(T , c)

We can obtain MUPSs for all unsatisfiable concepts. Based on those MUPSs, we can
calculate MIPS, core, and pinpoints further, by using the standard algorithms which have
been discussed in the previous chapter. Those data can be used for knowledge workers to
repair the ontology to avoid unsatisfiable concepts [25, 26].

3.2 Calculating terminological diagnoses

Terminological diagnosis, as defined in [24], is an instance Reiter’s diagnosis from first
principles. Therefore, we can use Reiter’s algorithms to calculate terminological diag-
noses. What is required is a method to produce conflict sets, and we will discuss three
different options for this. Let us first recall the basic methodology from [24]. Here, we
simplify the technical details in order to make the presentation slightly more intuitive.

Given an incoherent terminologyT , a conflict setis any incoherent subset ofT .3

Then, Reiter showed, that a set∆ ⊆ T is a diagnosis for an incoherent terminology iff∆
is a minimal set such thatT \∆ is not a conflict set forT .

The basic idea to calculate diagnoses from conflict sets is based on minimal hitting

3A related notion can be defined for unsatisfiability of concepts w.r.t. a terminology. For readability
reasons, we restrict ourselves to diagnosis of incoherence in terminologies.

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 21

Algorithm 3.4: Finding a MUPS forT in which a conceptc is unsatisfiable

Σ := ∅
repeat

for all φ1 ∈ T \ Σ do
if SynConcRel(φ1, c) or there is aφ2 ∈ Σ such thatSynConRel(φ1, φ2) then

Σ := Σ ∪ {φ1}
end if

end for
until c is unsatisfiable inΣ
for all φ ∈ Σ do

if c is unsatisfiable inΣ− {φ} then
Σ := Σ− {φ}

end if
end for

sets. SupposeC is a collection of sets. Ahitting setfor C is a setH ⊆
⋃

S∈C S such that
H ∩ S 6= ∅ for eachS ∈ C. A hitting set is minimal forC iff no proper subset of it is a
hitting set forC.

This gives the basis of Reiter approach to calculate diagnoses given the following
theorem which is a direct consequence of Corollary 4.5 in [22].

Theorem 3.2.1 A set∆ ∈ T is a diagnosis for an incoherent terminologyT iff ∆ is a
minimal hitting set for the collection of conflict sets forT .

To calculate minimal hitting trees Reiter introduces hitting set trees (HS-trees). For a
collectionC of sets, a HS-treeT is the smallest edge-labeled and node-labeled tree, such
that the root is labeled byX if C is empty. Otherwise it is labeled with any set inC. For
each noden in T , let H(n) be the set of edge labels on the path inT from the root to
n. The label forn is any setS ∈ C such thatS ∩ H(n) = ∅, if such a set exists. Ifn
is labeled by a setS, then for eachσ ∈ S, n has a successor,nσ joined ton by an edge
labeled byσ. For any node labeled byX,H(n), i.e. the labels of its path from the root, is
a hitting set forC.

Figure 3.3 shows a HS-tree T for the collection C =
{{1, 2, 3, 4, 5, 6}{3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}} of sets. T is created breadth
first, starting with root noden0 labeled with{1, 2, 3, 4, 5, 6}. For diagnostic problems the
sets in the collection are conflict sets which are created on demand. In our case, conflict
sets for a terminological diagnosis problem can be calculated by a standard DL engine
(by definition each incoherent subset ofT is a conflict set).

These calls are computationally expensive, which means that we have to minimize
them. In Figure 3.3, those nodes are boxed, for which labels were created by calls to
the prover.T reuses already calculated and smallest possible labels, and is pruned in a

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 22

variety of ways, which are defined in detail in [22]. Just for example, noden0 is relabeled
with a subset{3, 4, 5} of its label. We denote by1×, that element1 is deleted. Note, that
no successor for this element has to be created. Noden6 has been automatically labeled
with {4, 7}, because the intersection of its pathh(n6) = {2, 3} is empty with an already
existing conflict set in the tree.

Three ways of implementing diagnosis The generality of Reiter’s algorithm has the
advantage of giving some leeway for particular methodological choices. We implemented
three ways of calculating conflict sets.

1. Use an optimized DL reasoner to return a conflict set in each step of the creation of
the HS-tree. The only way to get conflict sets for an incoherent TBoxT is to return
T itself, i.e. themaximal conflict set.

2. Use an adapted DL reasoner to returnsmall conflict sets, which it can derive from
the clashes in a tableau proof.

3. Use a specialized method to returnminimal conflict sets, e.g., using the algorithms
of [25].

Diagnosis with maximal conflict sets The most general way to calculate terminolog-
ical diagnosis based on hitting sets is to use one of the state-of-the-art optimized DL
reasoner. The advantage is obvious: the expressiveness of the diagnosis is only restricted
by the expressiveness of the DL reasoning implemented in the reasoner. We use RACER,
which allows to diagnose incoherent terminologies up toSHIQ without restriction on
the structure of the TBox. The algorithm to use RACER is simple: ifT is incoherent, re-
turnT , other return∅. As RACER is highly optimized we can expect to get the maximal
conflict sets efficiently.

The disadvantage of this naive approach is that the conflict sets are huge, and even
with reusing of node labels and pruning, the HS-tree become quickly to large to handle.
Take the incoherent TBoxT ∗ where the related HS-tree already has 380 nodes, and needs
67 calls to RACER. We will see that the price we pay for the gain in expressiveness is too
high, and that smaller conflict sets are required.

Diagnosis with small conflict sets The disadvantage of using a DL reasoner as a black-
box is that they do not provide any information on which components contribute to the in-
coherence. Technically, this means which axioms contribute to the closure of the tableau.
To show that already straightforward collecting of clash-enforcing axioms can dramati-
cally improve the efficiency of diagnosis, we implemented a simple tableau calculus for
unfoldableALC TBoxes. This reasoner returns an unordered, and not necessarily mini-
mal, list of axioms which are (indirectly) responsible for the clashes in the tableau. The
basic idea is to label each formula with a set of axioms, which are added to a formula in

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 23

n0 : {1×, 2
×

, 3, 4, 5, 6
×}

n1 : {3, 4, 5}

×

1

n2 : {1, 2, 4
×

, 6
×}

3

n5 : {4, 7}

1

×

4

n11 : ∅X

7

n6 : {4, 7}

2

×

4

n12 : ∅X

7

n3 : {1, 2}

4

n7 : ∅X

1

n8 : ∅X

2

n4 : {1, 2}

5

n9 : {4, 7}

1

×

4

n13 : ∅X

7

n10 : {4, 7}

2

×

4

n14 : ∅X

7

Figure 3.3: HS-Tree with small conflict sets

the tableau whenever they are used to “unfold” a defined concept. This algorithm is not
optimized, but returns small conflict sets, and the sizes of the HS-Trees decrease dramat-
ically. Figure 3.3 shows the hitting tree for the incoherence problem forT ∗ where small
conflict sets have been collected from tableau proofs. Compared to the previous method,
there were only 14 nodes created, and 11 calls to the DL reasoner necessary.

Diagnosis with minimal conflict sets Previously, we recalled the notion of minimal
unsatisfiability (and incoherence) preserving sub-terminologies MUPS and MIPS, which
were introduced in [25] for the debugging of terminologies.

The MUPSs of an incoherent terminologyT and an unsatisfiable conceptA are the
minimal conflict sets of this unsatisfiability problem. It is easily checked that each MUPS
{{ax1, ax2}, {ax1, ax3, ax4, ax5}} for A1 andT ∗ is indeed a minimal conflict set. This
time, only 12 nodes were created. Based on the MUPS, it is straightforward to calculate
MIPS, which are the minimal conflict sets for the incoherence problem.

Proposition 3.2.1 The MIPS of an incoherent terminologyT are the minimal conflict
sets for this incoherence problem.

Figure 3.4 shows the hitting tree for the incoherence problem ofT ∗ where minimal
conflict sets have been calculated as MIPS.4

4An axiomaxi is represented by the numberi.

CHAPTER 3. ALGORITHMS FOR DEBUGGING AND DIAGNOSIS 24

n0 : {1, 2}

n1 : {3, 4, 5}

1

n3 : {4, 7}

3

×

4

n9 : ∅X

7

n4 : ∅

4

n5 : {4, 7}

5

×

4

n10 : ∅X

7

n2 : {3, 4, 5}

2

n6 : {4, 7}

3

×

4

n11 : ∅X

7

n7 : ∅

4

n8 : {4, 7}

5

×

4

n12 : ∅X

7

Figure 3.4: HS-Tree with minimal conflict sets

Chapter 4

A qualitative evaluation of the
framework

4.1 Two motivating examples

To demonstrate the use of our debugging approach, we first take a well-described ontol-
ogy. We use the Pizza ontology from the Protéǵe OWL tutorial1. Next, we will discuss
the use of our approach to an extended version of the pizza ontology, which has a larger
number of unsatisfiable concepts.

Pizza ontology This pizza ontology purposely contains two unsatisfiable concepts, Ice-
Cream and CheeseyVegetableTopping. Whereas the causes of the unsatisfiability are re-
alistic, this ontology is a special case because the concepts that are unsatisfiable are fully
unrelated, and the unsatisfiability does not propagate to other concepts.

mups(Pizza, IceCream) ={ IceCreamv DomainConceptu ∃ hasTopping. FruitTopping
, disjoint(IceCream, Pizza), role hasTopping :domain Pizza}

mups(Pizza, CheeseyVegetableTopping) ={ CheeseyVegetableToppingv CheeseTop-
pingu VegetableTopping , disjoint (CheeseTopping, VegetableTopping)}

As the MUPS for both concepts contain exactly one set of axioms, the diagnoses for
unsatisfiability of the concepts are the individual axioms:

∆Pizza,IceCream = { {IceCreamv DomainConceptu ∃ hasTopping. FruitTopping},
{disjoint (IceCream, Pizza)}, {role hasTopping :domain Pizza} }

∆Pizza,CheeseyV egetableTopping = { {CheeseyVegetableToppingv CheeseToppingu Veg-
etableTopping}, {disjoint (CheeseTopping, VegetableTopping)} }

It can be easily determined that

1http://www.co-ode.org/ontologies/pizza/2005/05/16/

25

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 26

mips(Pizza) = { {IceCreamv DomainConceptu ∃ hasTopping. FruitTopping , disjoint
(IceCream, Pizza) , role hasTopping :domain Pizza}, {CheeseyVegetableToppingv CheeseTop-
pingu VegetableTopping , disjoint (CheeseTopping, VegetableTopping)} }

and

∆Pizza = { {IceCreamv DomainConceptu ∃ hasTopping. FruitTopping , CheeseyVeg-
etableToppingv CheeseToppingu VegetableTopping}, {IceCreamv DomainConceptu ∃
hasTopping. FruitTopping , disjoint (CheeseTopping, VegetableTopping)}, {disjoint (IceCream,
Pizza) , CheeseyVegetableToppingv CheeseToppingu VegetableTopping}, {disjoint (Ice-
Cream, Pizza) , disjoint (CheeseTopping, VegetableTopping)}, {role hasTopping :domain Pizza
, CheeseyVegetableToppingv CheeseToppingu VegetableTopping}, {role hasTopping :domain
Pizza, disjoint (CheeseTopping, VegetableTopping)} }

For the generalized MIPS, only the definition of IceCream can be generalized, the
other definitions remain unchanged.

gmips(Pizza) = { {IceCream′ v ∃ hasTopping. FruitTopping′ , disjoint(IceCream′,
Pizza′) , role hasTopping :domain Pizza′ }, {CheeseyVegetableTopping′ v CheeseTopping′ u
VegetableTopping′ , disjoint (CheeseTopping′, VegetableTopping′) } }

As all MIPS are equivalent to MUPS, they all have a MIPS-weight of 1.

As there are no axioms that occur in both of the MIPS, there are only MIPS-cores of
arity 1. As a result, any diagnosis is also a pinpoint.

This example shows that for this ontology the MUPS are a useful reduction of the
ontology as a whole to small sets of concepts. The other measures are of limited inter-
est, due to the isolation of the unsatisfiable concepts and the absence of propagation of
unsatisfiability.

Extended Pizza ontology Suppose that within the Pizza ontology also 5 subsumees of
IceCream were defined, IceCream1 . . . IceCream5 and three subsumees of Pizza, Cheesey-
VegetablePizza1 . . . CheeseyVegetablePizza3, which are defined as CheeseyVegetable-
Pizzai v Pizzau ∃ hasTopping. CheeseToppingu ∀ hasTopping. VegetableTopping.

Now, the resulting ontology, which we will callPizza′ will have 10 unsatisfiable
concepts, IceCream, CheeseyVegetableTopping, plus the eight newly defined concepts.

Then the following MUPS are added:

mups(Pizza′, IceCreami) = { IceCreami v IceCream , IceCreamv DomainConceptu ∃
hasTopping. FruitTopping , disjoint (IceCream, Pizza) , role hasTopping :domain Pizza}

mups(Pizza′, CheeseyVegetablePizzai) = { CheeseyVegetablePizzai v Pizza u ∃
hasTopping. CheeseToppingu ∀ hasTopping. VegetableTopping , disjoint (CheeseTopping, Veg-
etableTopping)}

Additional MIPS can now be calculated for the extended ontology. Themips for the
new ontology is:

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 27

mips(Pizza′) = { {IceCreamv DomainConceptu ∃ hasTopping. FruitTopping , disjoint
(IceCream, Pizza) , role hasTopping :domain Pizza},
{CheeseyVegetableToppingv CheeseToppingu VegetableTopping , disjoint (CheeseTopping,
VegetableTopping)},
{CheeseyVegetablePizza1 v Pizzau ∃ hasTopping. CheeseToppingu ∀ hasTopping. Vegetable-
Topping , disjoint (CheeseTopping, VegetableTopping)},
{CheeseyVegetablePizza2 v Pizzau ∃ hasTopping. CheeseToppingu ∀ hasTopping. Vegetable-
Topping , disjoint (CheeseTopping, VegetableTopping)},
{CheeseyVegetablePizza3 v Pizzau ∃ hasTopping. CheeseToppingu ∀ hasTopping. Vegetable-
Topping , disjoint (CheeseTopping, VegetableTopping)} }

For the sake of brevity, we will not present the diagnoses and the generalized mips for
this example.

The MIPS-weight for{IceCreamv DomainConceptu ∃ hasTopping. FruitTopping ,
disjoint (IceCream, Pizza), role hasTopping :domain Pizza} is now 6. The other MIPS
have a weight of 1.

The core with the highest arity is now the axiom “disjoint (CheeseTopping, Vegetable-
Topping”), which has arity 4.

This core is used as the starting point for constructing a pinpoint. We can combine
this core with an axiom from the first MIPS. A pinpoint for this ontology now is:{disjoint
(CheeseTopping, VegetableTopping), disjoint (IceCream, Pizza)}.

In this example, we see that MIPS-weights and the cores indicate axioms that lead to
unsatisfiability of more concepts.

4.2 Applying the framework to real-life terminologies

In the previous section we presented the results of the approach on ontologies that were
specifically designed to demonstrate unsatisfiability. The outcomes demonstrated that the
cause(s) for unsatisfiability were clearly pinpointed.

We now present results from the implementation and application of the approach to
the real-world medical ontologies DICE [6] and FMA [23].

The current implementation of our approach can handle unfoldable TBoxes in
ALC [24]. An unfoldable TBox implies that all definitions are simple (defining only
atomic concepts), unique (only one definition for each atomic concept exists), and acyclic
(meaning the definition of a concept has no reference to the definiendum, either directly
or indirectly). The languageALC is a description logic where the allowed constructors
are the ones mentioned in Section 2.

Our implementation partly uses RACER to perform reasoning, and partly implements
algorithms to calculatemups,mips, gmips, and the heuristics. These algorithms are im-
plemented in Java, so it can run on the platforms that are supported by RACER (currently

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 28

available for 32bit versions of Windows, Linux or Mac OS X, for Sun and other branded
UNIX workstations with 32bit or 64bit, as well as 64bit Linux environments).

DICE The DICE knowledge base2, which is under development at the Academic Med-
ical Center in Amsterdam, contains about 2500 concepts. Each concept is described in
both Dutch and English by one preferred term, and any number of synonym(s) for each
language. In addition to about 1500 reasons for admission, DICE contains concepts re-
garding anatomy, etiology and morphology.

DICE originally has a frame-based representation, and is migrated to DL in order to be
able to perform auditing w.r.t. incorrect definitions and missed classification. In the DL-
based representation many closure axioms are used in order to be able to find incorrect
definitions. These closure axioms include disjointness of sibling concepts, and universal
restrictions. As a result of the migration process, various concepts become unsatisfiable.

A recent version of DICE was classified, resulting in 65 unsatisfiable concepts. For
one concept, calculation of MUPS failed in the current implementation, for yet unknown
reasons. For the remaining 64 concepts, a total of 175 MUPS are found.

142 MIPS are found, with the following distribution of MIPS-weights:
MIPS of weight 1: 121
MIPS of weight 2: 10
MIPS of weight 3: 0
MIPS of weight 4: 11

The pinpoint of this ontology consisted of the following five axioms, which form the
largest cores, according to the procedure defined in Section 2.

Core of arity 60: Disjointness of children of “Act”
Core of arity 56: Disjointness of children of “Dysfunction/Abnormality”
Core of arity 15: Disjointness of children of “System”
Core of arity 7 (43 in the fullmips): “Heart valve operations”
Core of arity 4: Disjointness of children of “Toxical substance”

The arity of 7 for “Heart valve operations” is the arity in the remainingmips after
removal of all MIPS containing the disjointness statements mentioned earlier. The arity
of this core in the fullmips is 43.

Based on these results one can determine where to start the debugging process. Ei-
ther the disjointness statements mentioned can be verified, or one can further analyze the
definition of and references to the concept “Heart valve operations”.

We will discuss the concept “Heart valve operations”, also in order to demonstrate the
use of generalized MIPS.

The concept is defined as:

2Development of DICE is supported by the National Intensive Care Evaluation (NICE) foundation.

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 29

HeartValveOperationsv HeartProceduresu
∃ HasSystemInvolvement. CirculatorySystemu
∀ HasSystemInvolvement. CirculatorySystemu
∃ LocalizedIn. HeartValveStructureu
∀ InvolvesDysfunction. (Thrombosist Insufficiencyt Stenosis)u
∃ InvolvesAct. Replacementu
∃ InvolvesAct. Resectionu
∃ InvolvesAct. Repairu
∃ InvolvesAct. Excisionu
∃ InvolvesAct. Inspectionu
∀ InvolvesAct. (Replacementt Resectiont

Repairt Excisiont Inspection)

As mentioned earlier, the DL-based representation is generated from a frame-based
representation [5]. In this migration process, it was decided that universal restrictions
were added as default, as is shown by the∀ constructors in the definition.

Inspection of this statement reveals incorrect semantics: five values for the In-
volvesAct role are required, whereas generally these operations involve one of these acts.
After correcting this modeling error, which resulted from an incorrect assumption in the
migration process, we can reapply our approach. The resulting ontology still has 62 un-
satisfiable concepts, resulting in 111 MIPS.

Now, the pinpoint only contains disjointness axioms. However, the definition for
Heart valve operations is still a core with an arity of 12, so we continue to focus on that
concept. One MIPS contains “Valve commissurotomy” (the definition of which contains
∃ InvolvesAct. Incision) and disjointness of Incision and Replacement, Resection, Repair,
Excision, and Inspection. This indicates that the definition of Heart valve operation should
be adjusted to include Incision in the disjunctions of the∀ InvolvesAct restriction.

In this way, we can iterate the process of making changes to the ontology and deter-
miningmups andmips. Alternatively, we could have focused on specific unsatisfiable
concepts, using themups.

FMA To test how our approach can be applied to other ontologies, we have used the
Foundational Model of Anatomy (FMA)3. FMA, developed by the University of Washing-
ton, provides about 69000 concept definitions, describing anatomical structures, shapes,
and other entities, such as coordinates (left, right, etc.). The FMA Knowledge Base,
which is implemented as a frame-based model in Protéǵe4, has been migrated to DL.

Due to its large size we were not able to classify the full FMA ontology with RACER.
We hence limited the case study to “Organs”, which comprises a convenient subset that
is representative for the FMA. Of the 3826 concept definitions, 181 were found to be

3http://sig.biostr.washington.edu/projects/fm/
4http://protege.stanford.edu/

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 30

unsatisfiable. Interestingly, this resulted in the single pinpoint “Organ”. This could be
explained by the definition of Organ:

Organv AnatomicalStructureu
∃ RegionalPartOf. OrganSystemu
∀ RegionalPartOf. OrganSystemu
∃ PartOf. OrganSystemu
∀ PartOf. OrganSystem

In FMA, the unsatisfiable concepts were defined as part of some organ, for example

Periodontiumv SkeletalLigament
∃ RegionalPartOf. Toothu
∀ RegionalPartOf. Toothu
∃ PartOf. Toothu
∀ PartOf. Toothu
∃ SystemicPartOf. Toothu
∀ SystemicPartOf. Tooth

Periodontium and Tooth are subsumed by Organ, and according to the definition of
Organ, Tooth should be an OrganSystem. Hence, it would be more correct to specify that
an Organ is also an allowed value for the (Regional)PartOf role, i.e. defining Organ as
follows:

Organv AnatomicalStructureu
∃ RegionalPartOf. (Organt OrganSystem)u
∀ RegionalPartOf. (Organt OrganSystem)u
∃ PartOf. (Organt OrganSystem)u
∀ PartOf. (Organt OrganSystem)

This example clearly shows how one axiom can lead to unsatisfiability of a large
number of concepts. The pinpoint properly detects this single axiom.

4.3 Qualitative evaluation

The implementation of our approach provides a useful contribution to the debugging pro-
cess. The heuristics (especially the Pinpoint) provide a good starting point for debugging
of the axioms. MUPS and generalized MIPS provide understandable explanations for
causes of unsatisfiability. In our experiments, performing the calculations for the MUPS,
MIPS and heuristics was a matter of minutes (on a 2.4 GHz PC with 1 GB memory).

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 31

The current implementation provides text-based output. This requires a modeler to
browse the output, and find for example the MUPS that are related to a MIPS. Apart from
further optimizing the algorithms and supporting more expressive logics, the various steps
in the debugging process can be further integrated to provide more support.

Debugging of ontologies gets increasing attention, which is driven by research in the
area on the semantic web on the one hand, and the need for robust ontologies on the other
hand. We will first look into truth maintenance systems, a research field in artificial in-
telligence that has not yet been discussed in this paper. These systems provide, at least
theoretically, a possibility for explaining reasoning. Next we will describe two implemen-
tations of other approaches to explanation, Swoop/Pellet and the OWL-debugger plug-in
for Prot́eǵe. These implementations differ in the approach followed. The Pellet reasoner,
described later in this section, uses a “glass-box” approach, that offers a debugging mode
in which explanation is provided as a result of the reasoning process. The Protéǵe OWL-
debugger, like our approach, uses a black-box approach. It looks for common modeling
errors as explanation for inconsistency, as is described in last Section of this Chapter.

Truth Maintenance Systems Truth maintenance systems (TMSs) [9] are designed to
keep track of inferences made in knowledge bases. For example, the implicationP ⇒ Q
might have been used to addQ to a knowledge base that containsP . One approach is
a justification-based truth maintenance system (JTMS). In such a system, each sentence
in the knowledge base is provided with a justification consisting of the set of sentences
from which it was inferred. In the example above,Q is provided with the justification
{P, P ⇒ Q}.

TMSs generally serve three distinct purposes: handling retraction of (incorrect) infor-
mation, speeding up analysis of multiple hypothetical situations, and providing a mech-
anism for generating explanations. In the example above, the justification provided with
Q is also an explanation for whyQ holds. ShouldP be retracted (for example because
it was found thatP does not hold), then from the justifications it can be determined that
Q should also be retracted, asP provided a justification forQ. Similar to our diagnoses,
these explanations should be minimal, i.e. no proper subset of an explanation should also
be an explanation.

As discussed in [2], a problem with implementing truth maintenance systems in DL
reasoners is the fact that efficiency of the highly optimized tableaux-based reasoning al-
gorithms may suffer, as is also experienced in Pellet. Therefore, a black-box approach
providing post-hoc explanation is a reasonable alternative to truth maintenance.

Explanation in Pellet One of the most elaborate implementations of debugging known
to the authors is the Pellet reasoner, combined with the SWOOP web ontology editor5,
which is described in [20],[17]. It provides a combination of black-box and glass-box

5http://www.mindswap.org/2005/debugging/

CHAPTER 4. A QUALITATIVE EVALUATION OF THE FRAMEWORK 32

approaches.

Glass-box techniques are used to support two forms of debugging of unsatisfiable
concepts: presenting the root cause of the contradiction and determining the relevant
axioms in the ontology that are responsible for the clash (the so-called minimal sets of
support).

The black-box methods focus on detecting dependencies between unsatisfiable
classes. Two types of unsatisfiable classes are recognized: root classes, and derived
classes. A root class is defined as an unsatisfiable class in which a clash or contradic-
tion found in the class definition (axioms) does not depend on the unsatisfiability of an-
other class in the ontology. A derived Class is an unsatisfiable class in which a clash or
contradiction found in a class definition depends on the unsatisfiability of another class.

The advantage of the Pellet/Swoop environment is that debugging clues are presented
in an integrated way. A drawback of the glass-box techniques is that it makes debugging
dependent to a specific reasoner. A comparison between the results of debugging with the
use of Swoop and Pellet is planned to be performed.

Explanation by the Protéǵe OWL-debugger Another example of debugging support
is the OWL-debugger6, which is a plug-in for Prot́eǵe [28, 27]. This debugger provides
a black-box approach, and is heuristic as it is based on experience, from which a set of
commonly made mistakes have been identified. Being based on heuristics, the debugger
is not complete, but it provides explanation to a majority of cases of unsatisfiability.

The process performed by the OWL-debugger resembles that of the Swoop/Pellet ap-
proach. First, an unsatisfiable core is identified, consisting of the smallest set of conditions
of a concept that render that concept unsatisfiable. A number of rules is then applied to
the unsatisfiable core, in order to determine the debugging super conditions (DSC), which
include all concepts that are involved in the unsatisfiable core, for example all supercon-
cepts. A most general conflicting class set is generated from the DSC, which is used to
produce an explanation for unsatisfiability.

The OWL-debugger also presents explanation in an integrated way, as part of the
Prot́eǵe ontology modeling environment. As it is a fully black-box implementation, it is
independent of the reasoner being used.

6http://www.co-ode.org/community/debugging.php

Chapter 5

Principals of a quantitative evaluation

In Chapter 4 we presented a qualitative discussion of the framework for debugging and di-
agnosis, which was primarily based on our own experience with incoherent terminologies
in a medical domain. In principle, these results were encouraging, as we claim that that
the MUPS, MIPS, diagnoses and the like, do indeed help. What remains to investigate
is whether we have effective algorithms to calculate those debugging operators, in which
cases a particular method will be more appropriate than another, and how much can in-
deed stretch our method in practice. In the next two chapters we attempt to answer these
questions given some practical experiments, in which we will run our toolsMUPSter
and DION against a number of benchmarks. First, however, let us discuss which research
questions we want to answer based on such a benchmark, and which basic requirements
this benchmark need to fulful.

5.1 Evaluating algorithms for debugging and diagnosis

Even though our experience showed that our approach to debugging and diagnosis is
useful in practice, we regularly encountered computational problems in the day to day
application. In this report we want to get a better understanding of the challenge, the
state-of-the-art of our tools, and the differences between the methods. Basically, there are
a number of questions:

• Can debugging be performed efficiently?More concretely, given an incoherent
terminology, can our tools support a practitioner effectively?

• What makes an incoherent terminology difficult to debug?We will see that the
answer to the previous question is not necessarily positive. Even worse, we know
that for most Description Logics our problem is exponentially hard1, which means

1Debugging is at least as hard as checking satisfiability, which is itselfPSPACEfor most DLs (see. e.g.,
Chapter 3 of [1]).

33

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 34

that we will never be able to guarantee termination in realistic time for any arbitrary
input. There might be particular classes of terminologies that are more difficult than
others, and it is important to study these difficulties to improve the methods.

• Which are the most appropriate methods to calculate?Not only will there be classes
that are more difficult than others, there will also be classes of TBoxes for which
one method is more appropriate than the other. To answer this question might allow
the user to choose the appropriate implementation according to his/her needs.

Based on these research questions, there are a number of criteria for a good test-set.
Most importantly, a test-set should be prototypical, so that it represents a larger class or
realistic problems. Also, it has to be systematical, so that influence of particular properties
of classes of TBoxes can be evaluated. Finally, a test-set should be statistically viable, i.e
the results of an experiment for a particular class of TBoxes should indeed have some
significance w.r.t. the properties it is meant to evaluate.

Moreover there are some criteria that are inherent to our evaluation, most importantly,
that we are restricted by the evaluated tools to incoherent, unfoldableALC TBoxes.

5.2 Three types of benchmark experiments

In order to fulfill the above described criteria, and to be able to address the asked research
questions we propose (and conducted) three different types of benchmark experiments,
first, an evaluation of the methods with real-world terminologies, secondly, an evaluation
using an adapted benchmark set from the DL literature, and finally, some experiments
with our own purpose-build data-set.

5.2.1 Evaluation with real-world terminologies

The ideal case of an evaluation is to use a number of The first approach to evaluation
of debugging methods is to consider a number of publicly available Description Logic
terminologies.

We split our test terminologies in three groups, ordered by how they were built. As
examples for terminologies created through migration we consider an older version of the
anatomy fragment of DICE (we abbreviateDICE-A), with 534 axioms and 76 unsatisfiable
concepts, and a previous full version of full DICE (abbreviatedDICE). The incoherence
of DICE-A has two distinct causes: first, this is a snap-shot from the terminology in its cre-
ation process, i.e. it contains real modeling errors. Moreover, the high number of contra-
dictions is specific for migration as a result of stringent semantic assumptions.MGED and
Geo are variants of ontologies which are incoherent because they have disjointness state-
ments artificially added for semantic enrichment (as suggested in [26]).MGED provides

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 35

length
#ax #unsat #mips |mips| of mD

DICE-A 534 76 16 3 3
DICE 4995 27 55 4 -

MGED 406 72 38 4 3
Geo 417 11 22 2.6 8
S&C 6382 923 - - -

MadC 69 1 - - 1
1 2 3 4 5

Table 5.1: Real-world terminologies

standard terms for the annotation of micro-array experiments to enable structured queries
on those experiments; andGeo an ontology of geography made available by the Teknowl-
edge Corporation. The third category contains the merged terminologies ofSUMO and
CYC, two well-known upper ontologies. As they are topic-related, and asCYC provides
disjointness statements, there is a high number of unsatisfiable concepts.

We constructed simplifiedALC versions for all five terminologies. Without loss of
unsatisfiability, we removed, for example, numerical constraints, role hierarchies and
instance information. All terminologies, however, were non-cyclic and could be trans-
formed to an unfoldable format.

For the last example, theMadC ontology, this is not the case. This ontology was
constructed to illustrate language features of Description Logics, and we use it to illustrate
Reiter’s generic method works for expressive formalisms, where both other methods fail.
MadC is incoherent with unsatisfiable conceptMadCow.

Benchmarking with real-life ontologies is obviously a most natural way of evaluating
the quality of debugging algorithms. On the other hand, there is only a limited amount
of realistic terminologies available that are incoherent. This has several reasons, first,
published ontologies usually have undergone a careful modeling process, and it should
be expected that logical modeling errors have already been eliminated (without the help
of automatic methods). Secondly, current ontologies often still use quite inexpressive
languages, for example, and avoid inconsistencies by not stating disjointness of classes.
The consequence is that the set of testing examples is limited, and it becomes difficult
to make a systematic evaluation of our algorithms as the bias of the data is simply too
dominant.

As an alternative it is common to use systematically created test-sets for benchmark-
ing, and such sets also exists to evaluate Description Logic reasoning.

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 36

5.2.2 Benchmarking with (adapted) existing test-sets

The issue of benchmarking Description Logic systems has been addressed exhaustively
in the literature over the last 10 years, mostly using adaptations of modal logic test-sets,
[18]. In most of these studies the purpose was to evaluate the runtime of DL reasoner
with respect to the complexity of the used language (mostly the modal depths). As they
were often planned to include comparisons with SAT- [10] or resolution-based systems
[16] most of the resulting test-sets are for concept satisfiability.

Unfortunately, we are bound by the expressiveness of our tools for the benchmark-
ing, which essentially means to restrict the experiments to test-sets with unfoldableALC
terminologies. Finding a good benchmark for unfoldable terminologies ontologies is dif-
ficult, though, as existing extensions to ontologies usually go beyond these requirements.

For this reason, we adapted an existing test-set forALC concept satisfiability, by
translating each unsatisfiable concept into an incoherent terminology. For this pur-
pose, we used the satisfiability tests from the well-known DL benchmark from the
1998 system comparison. We took 9 sets of unsatisfiable concepts usually denoted by:
DL98={k branch p, k d4 p, k dum p, k grz p, k lin p, k path p, k ph p, k poly p,
k t4p p}. The test procedure works as follows: each set contains 21 concepts with expo-
nentially increasing computational difficulty. The measure of the speed of the DL system
was then the highest concept in the list that could still be solved in 100 seconds. These
test-sets were build in the early days of the latest generation of Description Logic tools,
which did not have as many optimisations then as they have now. Nowadays, these test-
sets are outdated, as they are too easily solved by all existing DL systems. For our pur-
pose, however, they are still relevant, as the implemented top-down work (in the current
version) without optimisations.2

We translated each of the unsatisfiable concepts in the test-sets into one unfoldable
incoherentALC terminology in the following way: letC be an unsatisfiable concept, we
build an initial terminologyAC v C. Then each sub-conceptS that is in the scope of an
odd number of negations is (recursively) replaced by an atomAS, and an axiomASv̇S is
added to the terminology, whereAS andAC are new names not occurring in the concept.
Then the resulting TBox is incoherent. Let us illustrate the method with an example,
rather than give a formal definition. Suppose we have an unsatisfiable conceptC =
∃r.(AtB)u∀r.(¬Au¬B). We first build a terminologyT = {AC v C}, and replace the
outermost subformulas ofC by atomsA1 andA2. T is now{AC v A1uA2, A1v̇∃r.(At
B), A2v̇∀r.(¬Au¬B)}. Next we transform the definitions ofA1 andA2, which leads to
the following TBox{AC v A1uA2, A1v̇∃r.A3, A2v̇∀r.A4, A3v̇AtB,A4v̇¬Au¬B},

2There is an experimental implementation, which trades completeness of the method with a number of
optimisations. In this paper we restrict our attention to the more robust, and complete, standard implemen-
tation ofMUPSter.

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 37

and so on. The resulting terminology forC = ∃r.(A tB) u ∀r.(¬A u ¬B) is then:

{AC v A1 u A2,
A1 v̇ ∃r.A3,
A2 v̇ ∀r.A4,
A3 v̇ A5 t A6,
A4 v̇ A7 u A8,
A5 v̇ A
A6 v̇ B
A7 v̇ ¬A
A8 v̇ ¬B}

For each of the sets of unsatisfiable concepts inDL98 we created an incoherent ter-
minology given the above mentioned method for the first three concepts. The resulting
terminologies are called:k branch p tbox1, k branch p tbox2, k branch p tbox3 and
similarly for all other sets inDL98.

An interesting phenomenon given this new test-set is that the data-sets are heavily
engineered to make reasoning hard, andto punish non-optimised reasoning. We will see
that this has drastic effects on the run-times of the different algorithms. On the other hand,
this reasoning-centered view does not really coincide with average structure of the real-
istic terminologies, that are out in practise. Mostly these terminologies are relatively flat
in structure, but large; and often the definitions strongly dependent on other definitions.
To account for this, we decided to build our own benchmark for evaluating algorithms for
debugging.

5.2.3 Benchmarking with purpose-built test-sets

In order to build a test-set for benchmarking our algorithms and implementations for de-
bugging and diagnosis several basic requirements have to be fulfilled: first, the resulting
TBoxes have to be unfoldable and inALC, and they have to be incoherent. Also, as
discussed in the beginning of this Chapter, the benchmark should be systematically con-
structed, so that classes of problems can be studied and general statements over properties
of TBoxes can be made.

These basic requirements leave a number of choices to create such a test-set: e.g.
creating an incoherent terminology could be achieved through systematic construction of
logical contradictions, or through random choice of operators and names. The first choice
has been made in the previously mentioned DL98 benchmark set, whereas in our test-
set we opted for the second option. This way we hope to get a stronger similarity with
realistic terminologies, while still retaining some control over parts of the structure of the
TBoxes.

Building such a test-set for debugging and diagnosis of incoherent terminologies is
difficult, because there is a plethora of parameters that could influence the complexity of

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 38

reasoning, and the difficulty for debugging. In our case we decided to fix a number of
parameters, and vary others.

Fixed Parameters The fixed parameters are those parameters which will not change
in any setup of the experimental analysis, i.e. for all terminologies we consider in the
experiments, we can consider the same properties. The most important fixed parameters
are the constant term-depth of the concept definitions, the fixed ratio between modal and
Boolean operators, and the ratio between defined and primitive concepts, and the restric-
tion to atomic negation.

• Constant term-depth.The term-depths of a concept is the maximal number of
operators that an atomic concept is “away from” under the scope of. More for-
mally, the term-depthtd(C) of anALC conceptC is defined recursively as follows:

td(C) = 0 if C is an atom
td(C) = max(td(C1), td(C2)) if C = C1 t C2

td(C) = max(td(C1), td(C2)) if C = C1 u C2

td(C) = td(C1) + 1 if C = ∃r.C1

td(C) = td(C1) + 1 if C = ∀r.C1

td(C) = td(C1) + 1 if C = ¬C1

We say that a concept has constant term-depth, iftd(C1) = td(C2)) for all sub-
conceptsC1 u C2 andC1 t C2. Intuitively, this implies that all paths of the term
representation of a concepts to the leaves are of the same length.

In logical terms this is not really a restriction, as for everyALC concept there is a
logically equivalent concept with constant term-depth.

• Ratio between modal and Boolean operators.3 When creating a concept definition
we decided create boolean and modal operators with the same probability. This
corresponds more or less to our experience with existing ontologies. Though they
often contain more modal quantifiers than Booleans the latter are not binary, which
is the way we create our concepts.

• Ratio between primitive and defined concept names.In an unfoldable TBox a de-
fined concept name is one that occurs on the left-hand side of an axiom. Semanti-
cally, the interpretation of the defined concepts can be derived from the interpreta-
tion of the base interpretation of the primitive concepts. For this test-set we decided
to have the same number of primitive and defined concept names. Evaluating the
influence of this parameter might be subject to further experiments but was out of
the scope of this research.

• Restriction to atomic negation.It is well known that it is possible to translate each
ALC concept into an equivalent one in Negation Normal Form (NNF) in linear time,

3By modal operators we understand the Box- and Diamond-like DL operators∃ and∀.

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 39

i.e. a concept where negations only occur atomically. This means that this technical
restriction does not really have an influence of the benchmarking, it should make
no significant difference whether debugging and diagnosis is performed on TBoxes
in NNF or not.

Variable Parameters The variable parameters will be those parameters we will do ex-
perimental evaluation over, i.e. the will influence properties of the resulting TBoxes,
which we believe can have a significant influence on the practical complexity. For the
current experiments we have four such variable parameters, the size of the TBox, the
concept-length, the ratio of disjunctions versus conjunctions, and the chance of an atom
being negated or not.

• Size of the TBox.We vary the size of the TBox from 10 to 200 axioms. This number
corresponds to the number of defined concepts.

• Concept length.As previously mentioned we restrict ourselves to TBoxes with
constant term-depths. In our experiments we will consider concept definitions of
term-depth 3 to 7. Intuitively, this means that each concept-name occurs in the
scope of 3 to 7 operators.

• Ratio of disjunction versus conjunction.As discussed before, when creating a con-
cept there is a 50% chance that the operator is Boolean. We then have to determine
whether this operator will be a disjunction or a conjunction. In our experiments we
vary this ratio from 10% to 30% up to 50%.4

• Ration of negated versus non-negated atoms.Once the full term-depth is reached in
our creation process, an atomic concept or its negation has to be created at random.
In the experiments we vary the probability of an atom to be negated from 30 to
70%.

Building a set of benchmark TBox Finally, we have to describe how to build an un-
foldableALC terminology. Suppose we have fixed the variable parameters TBox size
to #t with concept size to #s. To create thei-th axiom (i.e. to defined thei-th concept-
name) we create a concept of term-depth #s from all the primitive concept-names, and
the remaining concept-names that were not define in the firsti− 1 axioms. The construc-
tion of the concept is then simply a construction based on random choice with the given
probability distribution.

Given this method, we constructed 1611 unsatisfiable terminologies. Note that this
method does not automatically deliver incoherent TBox. On the contrary, the overall rate
of incoherence given this method is less than 30%. To consider only incoherent TBoxes

4We originally considered a similar variation of percentages for the ration between the choice of exis-
tential versus universal quantifier, but this seemed to give no new insights.

CHAPTER 5. PRINCIPALS OF A QUANTITATIVE EVALUATION 40

we therefore simply run an optimised DL reasoner to delete all coherent TBoxes from the
testset.

It should be noticed, the choice of parameters greatly influences the ratio of satisfiable
versus unsatisfiable terminologies, particularly thedisjunction/conjunctionratio. More
concretely, given the likelihood that a disjunction was chosen in 50% of the cases, only
5% of the resulting TBoxes were incoherent, as opposed to almost 50% of the TBoxes
when the likelihood was just 10%. The consequence of this is easy to see: assume that
we decide to create a fixed number of TBoxes for testing per parameter value, we will
have only 10% of incoherent TBoxes in our test-set with high disjunction ratio. The most
simple solution to this problem was to account for the satisfiability/unsatisfiability ratio,
and to create an accordingly larger number of TBoxes in the first place. In this way we
believe to have created a test-set of TBoxes, where each class of TBoxes corresponding
to a particular parameter choice is as likely to occur in the TBox as any other. Both the
test-set and the generator will be made available on our website.

Chapter 6

Experimental evaluation

In the previous chapter, we described three different test-sets we use for evaluating the
run-times, first, a set of 6 real-life ontologies we collected from the Internet, secondly,
an extension of an existing benchmark for evaluation of Description Logic systems, and
finally, a purpose build benchmark consisting of 1611 systematically constructed incoher-
ent terminologies. Interestingly, the results vary a lot, and it is worth looking into some
details to get a better understanding of the pros and cons of each of the algorithms.

6.1 Experiments to evaluate algorithms for debugging

The main notion for debugging are the minimal unsatisfiability and incoherence preserv-
ing sub-terminologies, the MUPS (of a TBox and an unsatisfiable concept) and MIPS (of
a TBox). Calculating MIPS can be done quite easily from MUPS. However, there are
conceptually very different ways of calculating MUPS, and we have implemented two
different strategies: a top-down method, which uses a specialised algorithm based on DL
tableau, and a bottom-up method which uses heuristics to guide a brute-force enumeration
method.

The theoretical complexity of the problem and the algorithms for unfoldableALC-
TBoxes is known. First, finding MIPS isPSPACEcomplete: obviously, finding MIPS is at
least as hard as checking satisfiability, and there is a simple brute-force way of calculating
all the MIPS using only polynomial space in terms of the size of the TBox (trial and error).
DION, implements a variant of such an algorithms, whereasMUPSter’s algorithm needs
exponential space w.r.t. the size of the TBox.1

While theMUPSter is the older method, the second one has some significant advan-
tages: because it uses existing purpose-build DL systems for the reasoning part via aDIG
interface its expressiveness only depends on the underlying prover. At the moment, this

1This is because finding prime implicants isNPCOMPLETEw.r.t. a formula, which might need exponen-
tial space in relation to the TBox.

41

CHAPTER 6. EXPERIMENTAL EVALUATION 42

Top-Down:Mupster Bottom-up: DION RacerPro
time for all MIPS time for all MIPS time for coherence check

DICE-A 12 sec timed out 4.3 sec
DICE 54 sec 32 sec 16.62sec

MGED 5 sec timed out 3.38 sec
Geo 20 sec 11 sec 1.82 sec

Sumo&Cyc timed out timed out 4.7 sec
MadCow not applicable 0.66 sec 0.22 sec

1 2 3

Table 6.1: Comparing top-down and bottom-up methods

means that DION can debug arbitrary ontologies in very expressive Description Logics,
such asSHIQ and the like.MUPSter, on the other hand, is restricted to unfoldableALC
TBoxes, and therefore severely less expressive than DION. On the other hand, DION has
a seemingly heavy disadvantage, in that its heuristics make it theoretically incomplete.
Here, we will try to find out whether there is price for expressiveness or completeness,
and whether we can identify cases in which one of the algorithms might be preferable to
the other.

6.1.1 Experiments with existing ontologies

The first set of experiments was performed on a dual AMD Athlon MP 2800+ with 2
GB memory. BothMUPSter and DION were given the six terminologies described in
Section 5.2.1. Both were timed-out if the programs had not calculated the set of MIPS
within one hour.

Results Figure 6.1 summarises the run-times of the two systems on the 6 terminologies
in columns 1 and 2. As a reference we also give in column 3 the runtime RacerPro 1.8.1
needs to find the unsatisfiable concepts. For theMadCow terminology,MUPSter could
not be applied as this is not an unfoldable terminology.

WhereasMUPSter manages to calculate all the MIPS within the time-limit for all
but theSumo&Cyc terminology, DION also fails in two more cases, the anatomy part of
DICE, and the MGED TBox. The results of the experiments show a scalability problem
for both algorithms with real big terminologies, as both methods failed to calculate MIPS
in the case ofSumo&Cyc, and DION also needs at least more than one hour for two more
terminologies. On the other hand, the run-times of DION are faster for the two examples
where it finds a solution, even thoughMUPSter can solve two more problems in the given
time.

Finally, it has to be noted, as a proof of concept more than anything else, that DION

CHAPTER 6. EXPERIMENTAL EVALUATION 43

is indeed capable of calculating MIPS for the more complexMadCow terminology.

Analysis The first conclusion from the experiments can easily be drawn: debugging is
computationally difficult, and with the current software it will be likely that calculating
MUPS and MIPS will in some cases fail no matter what algorithms is used. On a more
optimistic note, however, it is important to note, that solutions can be found in fairly
complex terminologies, such asDICE or MGED, even though this cannot be guaranteed
in general.

This remark is in line with reasoning in Description Logics in general, where the worse
case complexity also suggests that reasoning is in principle intractable. But despite this
very high computational complexity in the worse case, there are very promising results
in practical complexity (both for classical reasoning and debugging), which are based on
powerful optimisations.

Out of the four cases where our tools find solutions, two interesting, and antagonistic,
pieces of information stick out: the shorter runtime DION as compared toMUPSter in
the two cases where DION finds a solution, and the apparent unrelatedness of the run-
times of DION and RacerPro. As DION uses RacerPro as underlying reasoning engine, a
correlation could have been expected. However, even though there is almost no difference
in the time to check satisfiability for DICE and DICE-A, DION fails to find MIPS for the
latter. Similarly, the relatively small run-time of RacerPro onSumo&Cyc would suggest
that DION should be able to find MIPS, which it does not.

One way of explaining this behaviour is to consider the number of unsatisfiable con-
cepts in the 6 ontologies. Here might be a correlation, as both DICE-A and MGED have
a very high number of unsatisfiable concepts. As DION implements the calculation of
MIPS as a series of calculations of MUPS, it might simply need too many communica-
tion steps to the DIG interface to solve the MIPS problem in time.

However, it remains to be investigated in more detail, whether there are other crite-
ria that could be responsible for these relatively surprising results. For this purpose we
conducted some experiments on two sets of systematically built benchmarks.

6.1.2 Experiments with existing benchmarks

The analytic value of the previous set of experiments is relatively limited, as the results
could be severely influenced by some particularity of the chosen ontologies. Therefore,
we conducted a second set of experiments based on the benchmark set from the DL sys-
tems competition at DL 98.

The hope of running experiments against a more systematically built set of incoherent
TBoxes was to get some better understanding of the influence of specific properties of
terminologies on the computational properties of the respective algorithms.

CHAPTER 6. EXPERIMENTAL EVALUATION 44

Figure 6.1: Runtime of DION on DL98 testset

To this avail we run bothMUPSter and DION against a set of 27 TBoxes, where the
translation from the DL98 test-bench of the first three concepts were considered. The
results forMUPSter are summarised in Figure 6.2, those of DION in Figure 6.1

The graphics show the runtime per problem up to the time-out of 100 seconds. Hereby,
it can be expected that with an increasing number of the description of each problem also
the runtime goes up by construction of the problem.

We kept the relatively short time-out of 100 seconds from the original DL experiments.
This has to do with the nature of the experiments. Remember that the DL benchmark was
created in such a way that it show the weakness of an algorithm in an exponential way,
so adding more time will not change anything substantially. DION might solve one class
more, and MUPSter over the first two levels in some cases, but the general picture will be
the same.

Results The results of the experiments with the adapted DL benchmark set are almost
diametric to the results described in the previous section, as they show high failure rate
of theMUPSter tool to solve the more difficult cases, but very good computational be-
haviour of DION.

More concretely, it can be noticed thatMUPSter fails in all of the 9 different classes
to calculate even the 3 problem (out of a possible 21), whereas DION only fails in a single
case (k branch p) to terminate the debugging process. However, in 6 out of 9 possible

CHAPTER 6. EXPERIMENTAL EVALUATION 45

Figure 6.2: Runtime (in sec) ofMUPSter on DL98 testset

cases,MUPSter manages to find debugs for the most simple case. These results are in
line with the computational difficulty of the problems.

Analysis The results show clearly thatMUPSter fails to debug terminologies that are
based on complex unsatisfiability problems, such as the ones used in the DL98 evaluation.
These problems have been purpose-build to point to computational difficulties in satisfi-
ability checking, i.e. they explicitly exploit structural properties of formulas and provers.
More concretely, experience showed that the DL systems of the 90s failed in these cases,
because they used naive tableau algorithms, and the complexity of the test-set forced their
calculations to be “lost in the search space”.

This allows the conclusion that basic optimisations can significantly improve the per-
formance ofMUPSter, because techniques such as lemmatising and caching can avoid
the mentioned computational traps. The price in this case is a loss of theoretical correct-
ness. More precisely, the terminologies returned by our algorithm might not be minimal
any more. We doubt whether this is a problem in practise, as minimality is a nice, but not
strictly required feature of the MIPS.

As DION uses optimised reasoners, which can nowadays solve problems like those of
the DL98 test-set within milliseconds, via its DIG interface, it solved the problems easily.
This also has to do with the structure of the test-set: as we created the TBoxes from con-
cepts in a deterministic way, each axiom is related to the part of the concept it was created
from. But this syntactic structure corresponds one-to-one to DION’s search strategy: in

CHAPTER 6. EXPERIMENTAL EVALUATION 46

0

2

4

6

8

10

12

14

0 100 200 300 400 500 600 700 800

Runtime

Axioms added to test k-path-p

DION

3
3

3

3

3

3
3

Figure 6.3: Runtime (in seconds) of DION depending on the number of (unrelated) ax-
ioms tok path p1

DION we basically start with the definition on an unsatisfiable concept, and include the
next following axioms in our test procedure on the basis of a syntactic relation (occur-
rence of the defined name). Each calculation of MIPS therefore mirrors the construction
of the TBox from the unsatisfiable concept.

To counter this process we decided, in order to create a more realistic test-set, to add a
number of irrelevant axioms to the test-set. We arbitrarily chose the first TBoxk path p
and added 100, 200, 400 and 800 random axioms.2 Figure 6.3 summarise the run-times
of this experiments.

Although the problem is in principle exponential in the size of the TBox, DION shows
linear behaviour in this experiment. This also corresponds to the increasing run-time Rac-
erPro needs for checking coherence. This has an relatively simple explanation: it shows
that the strategy underlying DION controls the inherent complexity of the search process
in a nice ways. But it also poses a question with regard to our first set of experiments with
the real-world ontologies. Remember that we had noted there, that the failure of DION to
calculate any MIPS for two ontologies was independent of the computational complexity
to find unsatisfiable concepts (as shown by RacerPro).

One reason for this discrepancy could be that the created TBoxes have a very partic-
ular structure, as they usually only have a single unsatisfiable concepts. A more detailed
study of the original test-set is needed to be able to properly assess the reasons for those
differences.

2We took arbitrary coherent sets of axioms from our purpose-build test-set.

CHAPTER 6. EXPERIMENTAL EVALUATION 47

6.1.3 Experiments with purpose-build benchmark

The final set of experiments to evaluate algorithms of debuggers was conducted on our
own purpose built benchmark that was described in Section 5.2.3. Here the focus was not
on creating difficult reasoning problems, but on identifying features of terminologies that
would make debugging hard or easy. Furthermore, we intended our constructed TBoxes
to be as close as possible to the structures of realistic terminologies.

In these experiments we constructed classes of TBoxes according to some varying
parameters, and compared the runtimes of our tools for these classes with other classes.
This allows us to get some more insights into the influence of structural peculiarities of
TBoxes on the time needed for debugging.

The parameters we varied were the ratio of negated versus unnegated atoms, the num-
ber of disjunctions versus conjunctions, and the size of the concepts and of the TBox.

We will first summarise the results, before trying to provide some explanations, and a
critical discussion, for the sometimes unexpected results.

Results For the 1611 TBoxes tested in these experiments we checked the run-times of
the three tools DION andMUPSter for debugging, and RacerPro for consistency check-
ing. Again, the experiments were performed on a dual AMD Athlon MP 2800+ with 2
GB memory. The overall average run-times in seconds are summarised in the following
table:

MUPSter DION RacerPro
average in sec 2.05 1.68 1.35

These numbers show DION as the clear overall winner overMUPSter, which is in
line with the results of the previous experiments. It is worth noticing, that the overall run-
times ofMUPSter contain a call to RacerPro for a list of unsatisfiable concepts. Since
this external run-time takes on average about 70% ofMUPSter’s runtime, we expect
a strong correlation between RacerPro andMUPSter for those cases whereMUPSter
takes reasonably short time. Any difference in the run-time behaviour of these two tools
therefor points to an additional source of complexity inMUPSter’s core algorithm.

On the other hand, DION’s algorithm is completely based on calls to an external
reasoner, in our experiments RacerPro. Therefore, also a correlation between the times of
these tools can be expected.

The results of our experiments to identify computational properties of particular
classes of TBoxes are summarised in a number of figures, which we will discuss in the
following. In each of the following figures we show the average run-time in seconds for
each tool given a particular instantiation of values for the varying features.

Figure 6.4 shows the runtime (in seconds) of the three tools given a varying ratio of
30 to 70% of negated versus non-negated atoms in the axioms of the TBox. There is an

CHAPTER 6. EXPERIMENTAL EVALUATION 48

1

1.2

1.4

1.6

1.8

2

2.2

2.4

30 35 40 45 50 55 60 65 70

Runtime

Mupster

3

3

3

3

3

3
Dion

+

+ +

+

+

+
Racer

2

2 2

2 2

2

Figure 6.4: Average runtime (in seconds) depending on the ratio negative/positive atoms
(in %)

interesting discrepancy between the run-time of RacerPro andMUPSter, on the one side,
and DION on the other, as the former peak on a ratio of 40%, whereas the latter has its
highest value in the class of TBoxes with a probability of 30% that the atoms are negated.

This is a surprising result, and it might be worth to remember the construction of the
test-set. It is easy to see that the probability of TBoxes constructed with a negation ratio
of 40 or 50% are more likely to be incoherent. This has also been shown in some of
our secondary experiments. However, as we only consider incoherent TBoxes we would
not expect the difference between coherence and incoherent to influence the run-time
behaviour. Moreover, the run-times of Racer do not support the view that reasoning for
the class of TBoxes with 30% negated atoms might be harder than for the other cases.

A similar result can be seen in the study of the ratio between disjunctions and con-
junctions. Again, there is an almost equivalent behaviour ofMUPSter and RacerPro, and
a diverging pattern for DION. Here, the difference between lower and higher number of
disjunctions has significant influence on the runtimes of DION, much more than for Racer
andMUPSter.

Much more in line with expectation is the following experiment, where we vary the
size of the concepts in the definitions. Figure 6.6 summarises the results, where we com-
pare the run-times of our three tools on classes of TBoxes with concept-length 3 to 7.

In the case of varying concept-size, the result shows a clear correlation between the
three methods. There is a slight dip in computational difficulty of the concepts of size 4,
followed by an increasing run-time for all tools. Interestingly, the curve for DION is the
steepest, and for concepts of size 7, DION already takes more time thanMUPSter.

The most natural results can be seen in the experiments were the size of the TBox is
varied. Here, we take TBoxes of different length into account varying from 10 to 100 in

CHAPTER 6. EXPERIMENTAL EVALUATION 49

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

10 15 20 25 30 35 40 45 50

Runtime

Mupster

3
3

3

3
Dion

+

+

+

+
Racer

2
2

2

2

Figure 6.5: Average runtime depending on the disj/conj ratio

0.5

1

1.5

2

2.5

3

3.5

4

3 3.5 4 4.5 5 5.5 6 6.5 7

Runtime

Size of concepts

RacerPro

3
3

3 3
3

3
Dion

+

+

+
+

++
Mupster

2

2
2 2

2

2

Figure 6.6: Runtime (in seconds) depending on the size of the concepts

CHAPTER 6. EXPERIMENTAL EVALUATION 50

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180 200

Runtime

Number of axioms in the TBox

Runtime depending on the size of the TBox

Mupster

3

3
3 3

3

3
3 3

3

3
3

3
Dion

+
+

+

+
+

+
+

+
+

+
+

+
Racer

2 2 2 2 2 2
2 2 2 2 2

2

Figure 6.7: Runtime (in seconds) depending on the size of the TBox

steps of 10, comparing it with a single value for TBoxes of size 200. Here the general line
is an almost linear increase in run-time for all three tools up to 90 concepts, followed by
a slight decrease toward longer TBoxes.

Analysis Unfortunately, none of the initial experiments seem to indicate a clear expla-
nation for the run-time behaviour of particular classes of TBoxes. Even worse, almost
each experiments shows some very odd results.

In the two experiments where we vary the disjunction and negation ratios DION’s
run-times are not in line with eitherMUPSter or RacerPro. There are some possible
explanations, either these results correspond to some (unknown) properties of the DION
algorithm or implementation or to some peculiarities in our test-data. More experiments
(with a more detailed analysis of the benchmark set) are needed, before we can explain
this behaviour.

More conclusive are the next two experiments, in which a clear tendency can be seen
that debugging becomes more difficult with increasing TBox and concept-size. From
these two experiments, another conclusion might be drawn. Figure 6.6 shows an increase
in the runtime of DION which is much steeper than those of the other two tools. This has
its reasons in the DION algorithm, where the size of the search tree is determined by the
length of the concepts of the definitions (because of the choice of selection function). The
experiment described in Figure 6.7 suggests that the increase in complexity of the TBox
is controlled by the heuristics in a better way.

All the previously described experiments depend on the features of the TBoxes that are
known previous to debugging. This could be useful if we want to decide automatically
which tool to use for which terminology. A second class of features are those that are
inherent to debugging, i.e., which can only be determined by running a debugger on the

CHAPTER 6. EXPERIMENTAL EVALUATION 51

2

4

6

8

10

12

14

2 4 6 8 10 12

Runtime

Number of MIPS

Mupster

3
3 3 3

3 3
3

3

3
3

3
Dion

+ +

+
+

+

+

+

+
Racer

2 2 2 2 2 2 2 2 2 2 2

2

Figure 6.8: Runtime (in seconds) depending on the number of MIPS

data-sets. One such feature of our TBoxes that might be relevant to better understand the
runtime behaviour of our three tools is the number of MIPS for an incoherent terminology.

Figure 6.8 shows the runtimes of the three tools with respect to the number of MIPS
of the incoherent terminologies. The results are highly interesting, as they differ strongly
from the previous ones, and show a very distinct behaviour for each of the three tools.
Whereas RacerPro’s runtime remains almost constant for increasing MIPS-size, and
MUPSter shows an almost linear increase (up to the number 11), is there a clearly expo-
nential behaviour visible for DION.

For the values above 10, the numbers have to be read with care, as there are too few
examples to be statistically valid (only 6 in total). Nevertheless the data is interesting, as
it shows clearly DION’s difficulties to deal with incoherent TBoxes with large numbers
of MIPS.

Name of TBox Run-time Run-time incoherence
#MUPS DION MUPSter RacerPro

13 tbox60 7 1 3 7 v1 74.59 sec 26.40 sec 1.64 sec
11 tbox40 7 1 3 6 v1 46.07 sec 4.76 sec 1.38 sec
11 tbox80 7 1 5 5 v1 38.33 sec 2.58 sec 1.97 sec
10 tbox40 6 1 3 6 v1 15.65 sec 1.84 sec 1.20 sec
10 tbox80 5 1 4 7 v1 10.18 sec 2.67 sec 1.30 sec
10 tbox90 7 1 6 7 v1 46.67 sec 3.79 sec 2.10 sec

How can we explain the increasing run-time of the debugger, particularly of DION, for
an increasing number of MIPS? BothMUPSter and DION implement the same method
to calculate MIPS from MUPS. As an increasing number of MIPS is directly related to an
increasing number of MUPS, the difference can be found here: remember thatMUPSter
calculates all MUPS at the same time from a fully expanded tableau. This means that
calculating several MUPS is not more difficult than calculating fewer MUPS, as the initial

CHAPTER 6. EXPERIMENTAL EVALUATION 52

time-consuming act is the expansion of the tableau. However, the number of MUPS is
directly related to the breadth of the search-tree of DION, which adds one exponential
factor for each additional branch in the tree.

Remember, that the number of MIPS is also correlated with the number of “modelling
errors”, in the sense that it is more likely that there are more MIPS if there are more
erroneous axioms. This could explain the odd behaviour of DION for the class of TBoxes
with the smallest number (10%) of disjunctions as described in Figure 6.5. For concepts
with fewer branches, there will be more possible contradictions than for concepts with
more disjunctions. This implies that there will be more MIPS in the class of TBoxes with
a 10% probability that a Boolean operator is a disjunction, than in the class where the
probability is 30% or 50%, which in turn explains the run-time behaviour of DION.

As the latest experiments show, studying the properties of the results of the debug
seems to be a fruitful line, which could lead to an explanation of the run-time behaviour
of DION on the realistic terminologies studied in Section 6.1.1.

There are a number of open questions, that we have to leave for future research:

• What is the influence of other properties of TBoxes, i.e. the number of MUPS or
the average size of MIPS and MUPS.

• What is the relation between the a-posteriori features (#MIPS etc) and the data-
set? Can we explain the peculiarities of some results by secondary properties of the
benchmark?

In this report we focused on a-priori properties of TBoxes, i.e. properties that can be
determined before diagnosis and debugging, because one of our initial research goals was
to determine the best tool for a particular class of incoherent terminologies.

Answering the research questions

Let us end this Section by answering the research questions we presented in Section 5.1.
More concretely, there are three questions regarding the computational properties of de-
bugging, our tools and particular subclasses of incoherent terminologies, which we can
now answer on the basis of the experiments of the previous section.

Can debugging be performed efficiently? Realistic ontologies can be debugged in
some, but not all, cases. OverallMUPSter shows better performance on our real-world
examples than DION, which probably has to do with the large number of MIPS. On the
other hand, the other two benchmark show a more fine-grained picture: given our own
benchmark we can conclude that both methods scale quite well with the overall size of
the terminology and even the average length of the concepts. Finally, the DL benchmark
where complex reasoning is required show that optimised reasoners can be used for effi-
cient (if incomplete) debugging, but also that non-optimised techniques (such as the one

CHAPTER 6. EXPERIMENTAL EVALUATION 53

employed byMUPSter, which are naive w.r.t. the logical complexity of the reasoning)
necessarily fail. It is an open question whether there are any complete approaches that
might scale up in this case.

Diagnosis is a much harder problem, as it requires the calculation of all minimal
conflict sets and, on top of this, anNPCOMPLETEminimisation procedure.

What makes an incoherent terminology difficult to debug? The larger an incoherent
terminology, the more difficult it becomes. It seems that the increase in run-time is linear
with increasing TBox size, but exponential in the average size of the concepts. On the
other hand, the results of our experiments with our purpose-built benchmark regarding
the influence of the ratio of negated versus non-negated atoms and disjunction versus
conjunction do not show coherent influence on the run-time, and point to differences in the
two computational approaches rather than in the general difficult to debug an incoherent
terminology. Finally, the runtime w.r.t. the number of MUPS gives a clear indication that
the complexity increases with an increase in the number of modelling errors.

Which are the most appropriate methods to calculate? There are two critical cases:
first, the complexity of the standard reasoning is so thatMUPSter’s unoptimised tableau
calculus fails. Then, DION is a good choice, as it uses optimised DL reasoner. In the sec-
ond case, there are multiple-errors, which might hamper DION’s efficiency. In this case,
MUPSter can often be more efficient, as it uses a single procedure which is independent
on the number of errors. In all other cases, our results seem to indicate that both methods
perform comparably.

6.2 Experiments to evaluate terminological diagnosis

With a number of experiments we studied the feasibility of diagnosis. We implemented
the three techniques described in the previous section in JAVA,3 and applied them to the
terminologies introduced in Section 5.2.1

Table 6.2 summarizes the quantitative results of diagnosis on the 6 incoherent termi-
nologies introduced above. All experiments were performed on a Pentium III, 1.3.GHz,
RedHat Linux.

The first 4 columns summarize information about the terminologies, the number of
axioms, unsatisfiable concepts and MIPS, as well as the average size of the MIPS. Column
5 gives the length of the smallest diagnosis, Column 6 the time RACER needs to check
for incoherence of the terminology. The diagnostic results are split in three pairs: the first
two columns 7 and 8 ((labeled Maximal CS) give

3Implementations and test sets will be made publicly available.

CHAPTER 6. EXPERIMENTAL EVALUATION 54

Maximal CS Small CS Minimal CS
#D/hr timeD1 #D/hr timeD1 #D/hr timeD1

DICE-A 0 - 4 1622 s 27 151 s
MGED 0 - 10 40 s 58 31 s

Geo - - 8 114 s 115 62 s
S&C 0 - 0 - 0 -

WINE 6 37 s / / / /
MadC 4 12 s / / / /

1 2 3 4 5 6

Table 6.2: Comparing Diagnosis with different types of conflict sets

• the number of diagnoses calculated per hour (#D/hr), and

• the time to calculate the first diagnosis (timeD1)

based on maximal conflict sets. Similarly for columns 9 and 10, for small, and 11 and
12 for minimal conflict sets (calculated using MIPS). The runtime in column 12 contains
calculation of unsatisfiability using RACER, the calculation of the MIPS, and, finally, of
the hitting sets.

Analysis The most significant result is the almost complete failure to calculate diag-
noses using the naive maximal hitting set approach. Only for the toy examples of the
WINE andMadC terminologies are any diagnoses found. The reason for this is the length
of the minimal diagnosis and the number of axioms. As all but one axioms belong to
the maximal conflict sets, there are (#ax-1) branches at first level, and (#ax-1)*(#ax-2)
branches at level 2. To find a diagnosis of length 3, a branch of depth 3 has to be ex-
plored, which means, e.g., forDICE-A a total number of 100 million branches. Only
small ontologies with small diagnoses can be debugged in this most general way.

Things look better for the other methods. Both detect diagnoses of size up to 8 for
large terminologies such asDICE-A or GEO. Again, all depends on the size of the diag-
noses and the number of axioms. Still the results were unsatisfactory: there was not a
single algorithm that determined any diagnoses for the mergedSUMO andCYC ontology,
and only once did the algorithm terminate within an hour, namely when checkingDICE-A
using minimal conflict sets.

For this latter method (based on minimal conflict sets) the computational difficulty
lies in the fact that constructing minimal hitting sets from MIPS corresponds to calculat-
ing prime implicants for a propositional formula, and is thus an NP-COMPLETE prob-
lem. Although our prototypical implementation uses some optimization it is not efficient
enough to build and search very large HS-Trees. The intermediate implementation based
on small conflict sets could significantly be made faster by using an optimized reasoner
to return conflict sets more efficiently. From manual inspection we believe that the size

CHAPTER 6. EXPERIMENTAL EVALUATION 55

of the conflict sets (and thus the size of the HS-Tree) would not be much smaller, but the
time to find the small conflict sets could be significantly lower. In both cases, however,
the theoretical (and practical) complexity is very high.

A word of caution It should be mentioned that the run-times of diagnosis and debug-
ging cannot be compared as the experiments were performed on different computers.
Also, the evaluation of diagnosis has to be studied with care. Given the algorithms based
on HS-Trees diagnoses are calculated with increasing size, the given numbers can be
slightly misleading: remember that timeD1 denotes the time needed to calculate the first
diagnosis, and #D/hr the number of diagnosis calculated in one hour. The evaluation of di-
agnosis as presented here is meant as a comparison of the three different methods (based
on small, minimal and maximal conflict sets), and not for comparison with debugging.
This has to be left for future research.

Chapter 7

Concluding remarks

In previous work we had presented a framework for debugging and diagnosis, which was
published as Sekt Deliverable 3.6.2. This research was continued for this report, in which
we evaluate the previously defined methods in some detail.

This is done in two ways: first, we first, we study the effectiveness of our proposal in
a qualitativeway with some practical examples. Secondly, in aquantitative and statisti-
cal analysis, we try to get a better understanding of the computational properties of the
debugging problem and our algorithms for solving it.

In the qualititative part we discuss two simple incoherent terminologies to explain
the functionality and particular application scenarios of our debugging framework. This
framework was then applied to two incoherent terminologies which were used at the Aca-
demic Medical Center, Amsterdam, for the admission of patients to Intensive Care units.
This evaluation is described in Chapter 4.

For the statistical parts we conducted three sets of experimments in order to evaluate
the debugging problem and our algorithms and tools. First, we applied our two debugger
DION andMUPSter on a set of real-world terminologies collect from our applications
and the WWW. Secondly, we translated an existing test-set for Description Logic satisfi-
ability to an incoherence problem, and finally, we created our own benchmark.

The results are mixed: in general we can conclude that our proposed framework for
debugging is useful in practice. Our experience showed that a number of heuristics and
additional measures, such as the Generalised MIPS, the weight of MIPS or the pinpoints
are crucial in practical applications.

In terms of computational behaviour our results are slightly less positive: for each of
the described methods there are relatively simple cases, where debugging fails in reason-
able time. For example, the DION tool, which performs slightly better on average, fails
to compute MIPS for a number of real-world terminologies, whereMUPSter comes up
with a solution with minutes. On the other hand, the more complex reasoning gets, the
worse isMUPSter’s performance.

56

CHAPTER 7. CONCLUDING REMARKS 57

Our experiments gave us some better understanding of the properties of incoherent
terminologies that influence the debugging time, most notably the complexity of the defi-
nitions, and the number of logical modeling errors. There are, however, still several open
questions, mostly related to the combination of properties. This means that an estimation
of the run-time of the debuggers on the basis of the structure of the incoherent terminology
is still very difficult.

It has to be mentioned we restrict our attention purely to the evaluation of logical
debugging methods. Nowadays, there is much research on conceptual approaches to de-
bugging, which are out of the scope of this paper. Also, our evaluation has some severe
technical restrictions, most importantly the restriction to unfoldableALC terminologies.

In future research the methods for debugging have to be extended so that they can deal
with general ontologies. But the general properties we analysed in this paper will remain
the same: debugging will be possible, but computationally difficult. An interesting result
is the comparison of the two methods: top-down versus bottom-up, which both have their
merits in different cases. This might be an argument to extend theMUPSterapproach to
more expressive languages, and non-restricted ontologies.

Bibliography

[1] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Pe-
ter F. Patel-Schneider, editors.The Description Logic Handbook: Theory, Imple-
mentation, and Applications. Cambridge University Press, 2003.

[2] Alex Borgida, Enrico Franconi, Ian Horrocks, Deborah McGuinness, and Peter
Patel-Schneider. ExplainingALC subsumption. In Patrick Lambrix, editor,In-
ternational Workshop on Description Logics, Linköping, Sweden, volume 22, pages
37–40. CEUR-WS, 1999.

[3] Luca Console and Oskar Dressler. Model-based diagnosis in the real world: Lessons
learned and challenges remaining. InIJCAI ’99: Proceedings of the Sixteenth In-
ternational Joint Conference on Artificial Intelligence, pages 1393–1400. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[4] R. Cornet and A. Abu-Hanna. Evaluation of a frame-based ontology. A
formalization-oriented approach. InProceedings of MIE2002., volume 90, pages
488–93, 2002.

[5] R. Cornet and A. Abu-Hanna. Description logic-based methods for auditing
frame-based medical terminological systems.Artificial Intelligence in Medicine,
34(3):201–17, 2005.

[6] N. F. de Keizer, A. Abu-Hanna, R. Cornet, J. H. Zwetsloot-Schonk, and C. P.
Stoutenbeek. Analysis and design of an ontology for intensive care diagnoses.Meth-
ods of Information in Medicine, 38(2):102–12, 1999.

[7] J de Kleer and B C Williams. Diagnosing multiple faults.Artificial Intelligence,
32(1):97–130, 1987.

[8] Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all minimal
unsatisfiable subsets. InFifth ACM-SIGPLAN International Conference on Princi-
ples and Practice of Declarative Programming, pages 32–43. ACM, 2003.

[9] Jon Doyle. A truth maintenance system.Artificial Intelligence, 12(3):231–272,
1979.

58

BIBLIOGRAPHY 59

[10] Enrico Giunchiglia and Armando Tacchella. System description: *SAT: A platform
for the development of modal decision procedures. InConference on Automated
Deduction, pages 291–296, 2000.

[11] R. Greiner, B. A. Smith, and R. W. Wilkerson. A correction to the algorithm in
reiters theory of diagnosis.Artificial Intelligence, 41(1):79–88, 1989.

[12] Volker Haarslev and Ralf M̈oller. Description of the racer system and its applica-
tions. In Proceedings of the International Workshop on Description Logics (DL-
2001), pages 132–141. Stanford, USA, August 2001.

[13] I. Horrocks. The FaCT system. InTABLEAUX 98, pages 307–312, 1998.

[14] Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontolo-
gies. InProceedings of the International Joint Conference on Artificial Intelligence
- IJCAI’05, 2005.

[15] Z. Huang, F. van Harmelen, A. ten Teije, P. Groot, and C. Visser. Reasoning with
inconsistent ontologies: a general framework. Project Report D3.4.1, SEKT, 2004.

[16] Ullrich Hustadt and Renate Schmidt. MSPASS: Modal reasoning by translation and
first-order resolution. In Roy Dyckhoff, editor,Proceedings of the International
Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(T ABLEAUX 2000), volume 1847 ofLNAI, pages 67–71. Springer, 2000.

[17] Aditya Kalyanpur, Bijan Parsia, and Evren Sirin. Black box techniques for debug-
ging unsatisfiable concepts. In I. Horrocks, U. Sattler, and F. Wolter, editors,Pro-
ceedings of the International Workshop on Description Logics DL2005, Edinburgh,
Scotland, UK, volume 147. CEUR-WS, 2005.

[18] Fabio Massacci and Francesco M. Donini. Design and results of tancs-2000 non-
classical (modal) systems comparison. InTABLEAUX ’00: Proceedings of the Inter-
national Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, pages 52–56, London, UK, 2000. Springer-Verlag.

[19] B. Nebel. Terminological reasoning is inherently intractable.AI, 43:235–249, 1990.

[20] Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Debugging OWL ontologies. In
Proceedings of the 14th International World Wide Web Conference (WWW2005),
Chiba, Japan, pages 633–640, 2005.

[21] W.V. Quine. The problem of simplifying truth functions.American Math. Monthly,
59:521–531, 1952.

[22] R. Reiter. A theory of diagnosis from first principles.Artif. Intelligence, 32(1):57–
95, 1987.

BIBLIOGRAPHY 60

[23] Cornelius Rosse and Jose L. V. Mejino, Jr. A reference ontology for biomedical
informatics: the foundational model of anatomy.Journal of Biomedical Informatics,
36(6):478–500, 2003.

[24] S. Schlobach. Diagnosing terminologies. In Manuela Veloso and Subbarao Kamb-
hampati, editors,AAAI, Pittsburgh, PA, 2005.

[25] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. InProceedings of the eighteenth International Joint
Conference on Artificial Intelligence, IJCAI’03. Morgan Kaufmann, 2003.

[26] Stefan Schlobach. Debugging and semantic clarification by pinpointing. In
A. Gómez-Ṕerez and J. Euzenat, editors,ESWC, Heraklion, Greece, volume 3532,
pages 226–240. Springer, 2005.

[27] Hai Wang, Matthew Horridge, Alan Rector, Nick Drummond, and Julian Seiden-
berg. Debugging OWL-DL ontologies: A heuristic approach. In Brahmananda
Sapkota, editor,Proceeding of the 4th International Semantic Web Conference
(ISWC2005), Galway, Ireland. Springer, 2005.

[28] Hai Wang, Matthew Horridge, Alan Rector, Nick Drummond, and Julian Seiden-
berg. A heuristic approach to explain the inconsistency in OWL ontologies. In N. F.
Noy, editor,Proceeding of the Protéǵe Conference, Madrid, pages 65–68. Stanford
KSL, 2005.

