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Executive Summary

In this document, we give an overview of the framework for inconsistent ontology di-
agnosis and repair, which is based on a number of new non-standard reasoning services
to explain inconsistency through pinpointing. DION has been developed as a bottom-up
approach to calculate pinpoints by the support of an external DL reasoner.

We have implemented the prototype of DION2, an extended system of DION (Debug-
ger of Inconsistent ONtologies). The new functionalities of DION2 are: multiple platform
support, integration with KAON2, and preprocessing of inconsistent ontologies for more
fine-grained debugging.

In this document, we describe two preliminary experiments in which we applied
DION2 to SEKT ontology learning data and SEKT legal ontologies for their inconsis-
tent ontology debugging and repair.
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Chapter 1

Introduction

Ontologies play a crucial role in the Semantic Web (SW), as they allow the sharing of
information in a semantically unambiguous way, and to reuse domain knowledge (possi-
bly created by external sources). However, this makes SW technology highly dependent
on the quality and correctness of these ontologies. Two general strategies for quality as-
surance are predominant, one based on developing more and more sophisticated ontology
modeling tools, the second one based on logical reasoning. In this document we will
focus on the latter. With the advent of expressive ontology languages such as OWL and
its close relation to Description Logics (DL), state-of-the art DL reasoners can efficiently
detect inconsistencies even in very large ontologies. The practical problem remains what
to do in case an ontology has been detected to be locally incorrect.

There are two main ways to deal with inconsistent ontologies. One is to simply “live
with” the inconsistency and to apply a non-standard reasoning method to obtain mean-
ingful answers in the presence of inconsistencies. Such an approach is taken in [11].
An alternative approach is to resolve (or: “debug”) the error whenever an inconsistency
is encountered. In this document we focus on this debugging process, and we will fo-
cus on the terminological part of ontologies (and talk about debugging of terminologies).
We will introduce the formal foundations for debugging and diagnosis of logically incor-
rect terminologies, more precisely the notions of minimal unsatisfiability-preserving sub-
TBoxes (abbreviated MUPS) and minimal incoherence-preserving sub-TBoxes (MIPS) as
the smallest subsets of axioms of an incoherent terminology preserving unsatisfiability of
a particular, respectively of at least one unsatisfiable concept.

Our approach to diagnosing incoherent terminologies is based on traditional model-
based diagnosis which has been studied over many years in the AI community [20]. Here
the aim is to find minimal fixes, i.e. in our case minimal subsets of an terminology that
need to be repaired or removed to render a terminology logically correct, and therefore
usable again. We will see that in Reiter’s terminology, MIPS and MUPS correspond to
minimal conflict sets.

In SEKT deliverable D3.6.1 [26], we describe two algorithms for debugging, a
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CHAPTER 1. INTRODUCTION 3

bottom-up method using the support of an external reasoner, and an implementation of
a specialized top-down algorithm. The former is based on the systematic enumerations of
terminologies of increasing size based on selection functions on axioms, the latter is based
on Boolean minimization of labels in a labeled tableau calculus. Both methods have been
implemented as prototypes. The prototype for the informed bottom-up approach is called
DION (Debugger of Inconsistent ONtologies)1, the prototype of the specialized top-down
method is called MUPSTER.

In [25], we provide a detailed evaluation of our methods. We perform a set of con-
trolled benchmark experiments to get a better understanding of the computational prop-
erties of the debugging problem and our algorithms for solving it. The combined results
of the case-study and the controlled experiments show that on the one hand, debugging
is useful in practice, but that on the other hand we cannot guarantee that our tools will
always find explanations in a reasonable time. The most important criteria will turn out
to be the size and complexity of the definitions and the number of modeling errors.

In this document, we will report the approach of DION only, because DION more
flexible, expressive and easy to adapt [25]. Therefore, the extension of MUPSter is dis-
continued.

This document is organized as follows: Chapter 2 proposes a framework of inconsis-
tent ontology diagnosis and repair. Chapter 3 describes the prototypes of the implementa-
tion issues of DION2. Chapter 4 reports the experiments of DION2 with SEKT ontology
learning data. Chapter 5 discusses further work and concludes the document.

1http://wasp.cs.vu.nl/sekt/dion



Chapter 2

Debugging Incoherent Terminologies

Description Logics are a family of well-studied set-description languages which have
been in use to formalize knowledge for over two decades. They have a well-defined
model theoretic semantics, which allows for the automation of a number of reasoning
services.

2.1 Logical Errors in Description Logic Terminologies

For a detailed introduction to Description Logics we point to the second chapter of the
DL handbook [2]. Briefly, in DL concepts will be interpreted as subsets of a domain,
and roles as binary relations. Let, throughout the paper, T = {ax1, . . . , axn} be a set
of (terminological) axioms, where axi is of the form Ci v Di for each 1 ≤ i ≤ n
and arbitrary concepts Ci and Di. We will also use terminological axioms of the form
C = D and disjointness statements disjoint(C,D) between two concepts C and D, which
are simple abbreviations of (C v D)&(D v C), and C v ¬D respectively.1 Most DL
systems also allow for assertional axioms in a so-called ABox. In this paper, ABoxes
will not be considered. Throughout the paper the term ontologies will refer to general
knowledge bases which possibly include both terminological and assertional knowledge.
The term terminology is solely used in the technical sense of a DL TBox.

2.1.1 Unsatisfiability and Incoherence

Let U be a finite set of objects, called the universe. A mapping I, which interprets DL
concepts as subsets of U is a model of a terminological axiom C v D, if, and only if,
CI ⊆ DI . A model for a TBox T is an interpretation which is a model for all axioms in
T . Based on these semantics a TBox can be checked for incoherence, i.e., whether there

1The latter requires negation in the language, and a careful treatment of unfolding (which might either
become incomplete or non-terminating).
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CHAPTER 2. DEBUGGING INCOHERENT TERMINOLOGIES 5

ax1:A1v¬A uA2 uA3 ax2:A2vA uA4

ax3:A3vA4 uA5 ax4:A4v∀s.B u C
ax5:A5v∃s.¬B ax6:A6vA1 t ∃r.(A3 u ¬C uA4)
ax7:A7vA4 u ∃s.¬B

Table 2.1: A small (incoherent) TBox T 1

are unsatisfiable concepts: concepts which are necessarily interpreted as the empty set in
all models of the TBox. More formally

1. A concept C is unsatisfiable w.r.t. a terminology T if, and only if, CI = ∅ for all
models I of T .

2. A TBox T is incoherent if there is a concept name in T , which is unsatisfiable.

Conceptually, these cases often point to modeling errors because we assume that a
knowledge modeler would not specify something like an impossible concept in a complex
way.

Table 2.1 demonstrates this principle. Consider the (incoherent) TBox T 1, where
A, B and C, as well as A1, . . . , A7 are concept names, and r and s roles. Satisfiability
testing returns a set of unsatisfiable concept names {A1, A3, A6, A7}. Although this is still
of manageable size, it hides crucial information, e.g., that unsatisfiability of A1 depends,
among others, on unsatisfiability of A3, which is in turn unsatisfiable because of the con-
tradictions between A4 and A5. We will use this example later in this paper to explain our
debugging methods.

2.1.2 Unfoldable ALC TBoxes

In this paper we study ways of debugging and diagnosing of incoherence and unsatisfi-
ability in DL terminologies. The general ideas can easily be extended to inconsistency
of ontologies with assertions as suggested in [25]. As the evaluation in this paper will
be about terminological debugging only, we will restrict the technical definitions to the
necessary notions.

Whereas the definitions of debugging were independent of the choice of a particular
Description Logic, we will later present algorithms for the Description Logic ALC, and
unfoldable TBoxes, in particular.

ALC is a simple yet relatively expressive DL with conjunction (C uD), disjunction
(CtD), negation (¬C) and universal (∀r.C) and existential quantification (∃r.C), where
the interpretation function is extended to the different language constructs as follows:
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(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = U \ CI

(∃R.C)I = {d ∈ U | ∃e ∈ U : (d, e) ∈ RI and e ∈ CI}
(∀R.C)I = {d ∈ U | ∀e ∈ U : (d, e) ∈ RI implies e ∈ CI}

A TBox is called unfoldable if the left-hand sides of the axioms (the defined concepts)
are atomic and unique, and if the right-hand sides (the definitions) contain no direct or
indirect reference to the defined concept [19].

2.2 Framework for debugging and diagnosis

We now introduce a theory of debugging and diagnosis and link it to description logic-
based systems. In this case a diagnosis is a smallest set of axioms that needs to be removed
or corrected to render a specific concept or all concepts satisfiable.

In some situations, terminologies can contain a large number of unsatisfiable concepts.
This can occur for example when terminologies are the result of a merging process of
separately developed terminologies, or when closure axioms (i.e. disjointness statements
and universal restrictions) are added to terminologies. Unsatisfiability propagates, i.e. one
unsatisfiable concept may cause many other concepts to become unsatisfiable as well. As
it is often not clear to a modeler what concepts are the root cause of unsatisfiability, we
also describe a number of heuristics that help to indicate reasonable starting points for
debugging an terminology.

2.2.1 Model-based Diagnosis

The literature on model-based diagnosis is manifold, but we focus on the seminal work of
Reiter [20], and [8], which corrects a small bug in Reiter’s original algorithm. We refer
the interested reader to a good overview in [5].

Reiter introduces a diagnosis of a system as the smallest set of components from that
system with the following property: the assumption that each of these components is
faulty (together with the assumption that all other components are behaving correctly) is
consistent with the system description and the observed behavior. In other words: assum-
ing correctness of any one of the components in a diagnosis would cause inconsistency
between the system description and the observed behavior.

To apply this definition to a description logic terminology, we regard the terminology
as the system to be diagnosed, and the axioms as the components of this system. If we
look at the example terminology from Table 2.1, the system description states that it is
coherent (i.e. all concepts are satisfiable), but the observation is that A1, A3, A6, and
A7 are unsatisfiable. In Reiter’s terminology, a minimal set of axioms that need to be



CHAPTER 2. DEBUGGING INCOHERENT TERMINOLOGIES 7

removed (or better fixed) is called a diagnosis. This adaptation of Reiter’s method leads
to the following definition of terminological diagnosis.

Definition 1 Let T be an incoherent terminology. A (terminological) diagnosis for the
incoherence problem of T is a minimal set of axioms T ′ ⊆ T such that T \T ′ is coherent.
Similarly, a diagnosis for unsatisfiability of a single concept A in T is any minimal subset
T ′ ⊆ T , such that A is satisfiable w.r.t. T \ T ′.

Reiter provides a generic method to calculate diagnoses on the basis of conflict sets
and their minimal hitting sets. A conflict set is a set of components that, when assumed to
be fault free, lead to an inconsistency between the system description and observations.
A conflict set is minimal if and only if no proper subset of it is a conflict set. The minimal
conflict sets (w.r.t. coherence) for the system in Table 2.1 are {ax1, ax2}, {ax3, ax4,
ax5}, and {ax4, ax7}.

A hitting set H for a collection of sets C is a set that contains at least one element of
each of the sets in C. Formally: H ⊆

⋃
S∈C S such that H ∩ S 6= ∅ for each S ∈ C. A

hitting set is minimal if and only if no proper subset of it is a hitting set. Given the conflict
sets above, the minimal hitting sets are: {ax1, ax3, ax7}, {ax1, ax4}, {ax1, ax5, ax7},
{ax2, ax3, ax7}, {ax2, ax4}, and {ax2, ax5, ax7}.

Reiter shows that the set of diagnoses actually corresponds to the collection of mini-
mal hitting sets for the minimal conflict sets. Hence, the minimal hitting sets given above
determine the diagnoses for the system w.r.t. coherence.

2.2.2 Debugging

As previously mentioned, the theory of diagnosis is built on minimal conflict sets. But in
the application of diagnosis of erroneous terminologies, these minimal conflict sets play
a role of their own, as they are the prime tools for debugging, i.e. for the identification of
potential errors. For different kind of logical contradictions we introduce several different
notions based on conflict sets, the MUPS for unsatisfiability of a concept, the MIPS for
incoherence of a terminology.

Minimal unsatisfiability-preserving sub-TBoxes (MUPS)
In [22] we introduced the notion of Minimal Unsatisfiability Preserving Sub-TBoxes
(MUPS) to denote minimal conflict sets. Unsatisfiability-preserving sub-TBoxes of a
TBox T and an unsatisfiable concept A are subsets of T in which A is unsatisfiable. In
general there are several of these sub-TBoxes and we select the minimal ones, i.e., those
containing only axioms that are necessary to preserve unsatisfiability.

Definition 2 A TBox T ′ ⊆ T is a minimal unsatisfiability preserving sub-TBox (MUPS)
for A in T if A is unsatisfiable in T ′, and A is satisfiable in every sub-TBox T ′′ ⊂ T ′.
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We will abbreviate the set of MUPS of T and A by mups(T , A). MUPS for our example
TBox T 1 and its unsatisfiable concepts are:

mups(T 1, A1): {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T 1, A3): {{ax3, ax4, ax5}}
mups(T 1, A6): {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T 1, A7): {{ax4, ax7}}
In the terminology of Reiter’s diagnosis each mups(T , A) is a collection of minimal

conflict sets w.r.t. satisfiability of concept A in TBox T .

Remember that a diagnosis is a minimal hitting set for a collection of conflict sets.
Hence, from the MUPS, we can also calculate the diagnoses for unsatisfiability of concept
A in TBox T , which we will denote ∆T ,A.

∆T1,A1 : {{ax1}, {ax2, ax3}, {ax2, ax4}, {ax2, ax5} }
∆T1,A3 : {{ax3}, {ax4}, {ax5}}
∆T1,A6 : {{ax1}, {ax4}, {ax6}, {ax2, ax3}, {ax2, ax5} }
∆T1,A7 : {{ax4}, {ax7}}

Minimal incoherence-preserving sub-TBoxes (MIPS)
MUPS are useful for relating sets of axioms to the unsatisfiability of specific concepts, but
they can also be used to calculate MIPS, which relate sets of axioms to the incoherence
of a TBox in general (i.e. unsatisfiability of at least one concept in a TBox).

Definition 3 A TBox T ′ ⊆ T is a minimal incoherence preserving sub-TBox (MIPS) for
A in T if T ′ is incoherent, every sub-TBox T ′′ ⊂ T ′ is coherent.

This means that MIPS are minimal subsets of an incoherent TBox preserving unsatisfia-
bility of at least one atomic concept. The set of MIPS for a TBox T is abbreviated with
mips(T ). For T1 we get 3 MIPS: mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

Analogous to MUPS, each element of mips(T ) is a minimal conflict set w.r.t. in-
coherence of TBox T . Hence, from mips(T ), a diagnosis for coherence of T can be
calculated, which we denote as ∆T . From these definitions, we can determine the diag-
nosis for coherence of T 1:

∆T 1 = {{ax1, ax4}, {ax2, ax4}, {ax1, ax3, ax7}, {ax2, ax3, ax7}, {ax1, ax5, ax7},
{ax2, ax5, ax7}}

The number of MUPS a MIPS is a subset of determines the number of unsatisfiable
concepts of which it might be the cause. We will call this number the MIPS-weight.

In the example terminology T 1 we found six MUPS and three MIPS. The MIPS {ax1,
ax2} is equivalent to one of the MUPS for A1, {ax1, ax2}, and a proper subset of a MUPS
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for A6, {ax1, ax2, ax4, ax6}. Hence, the weight of MIPS {ax1, ax2} is two. In the same
way we can calculate the weights for the other MIPS: the weight of {ax3, ax4, ax5} is
three, the weight of {ax4, ax7} is one. Intuitively, this suggests that the combination of
the axioms {ax3, ax4, ax5} is more relevant than {ax4, ax7}.

Weights are easily calculated, and play an important role in practice to determine
relative importance within the set of MIPS, as we experienced in several case studies.

Pinpoints

Experiments described in [21] indicated that calculating diagnoses from MIPS and MUPS
is simple, but computationally expensive, and often impractical for real-world terminolo-
gies. For this purpose, we introduced in [23] the notion of a pinpoint of an incoherent
terminology T , in order to approximate the set of diagnoses. The definition of the set
of pinpoints is a procedural one, following a heuristic to insure that most pinpoints will
indeed be diagnoses. However, there is no guarantee of minimality, so that not every
pinpoint is not necessarily diagnosis.

To define pinpoints we need the notion of a core: MIPS-weights provide an intuition
of which combinations of axioms lead to unsatisfiability. Alternatively, one can focus on
the occurrence of the individual axioms in MIPS, in order to predict the likelihood that
an individual axiom is erroneous. We define cores as sets of axioms occurring in several
MIPS. The more MIPS such a core belongs to, the more likely its axioms will be the cause
of contradictions.

Definition 4 A non-empty subset of the intersection of n different MIPS in mips(T ) (with
n ≥ 1) is called a MIPS-core of arity n (or simply n-ary core) for T .

For our example TBox T 1 we find one 2-ary core, {ax4} of size 1. The other axioms in
the MIPS are 1-ary cores. Pinpoints are defined in a structural way.

Definition 5 Let mips(T ) be the set of MIPS of T , i.e. a collection of sets of axioms. The
set of possible outputs of the following procedure will be called the set of pinpoints.

Let M := mips(T ) be the collection of MIPS for T , P = ∅:
(1) Choose in M an arbitrary core {ax} of size 1 with maximal arity.
(2) Then, remove from M any MIPS containing {ax}
(3) P := P ∪ {ax}
Repeat steps (1) to (3) until M = ∅. The set P is then called a pinpoint of the

terminology.

As step (1) contains a non-deterministic choice, there is no unique pinpoint but a set
possible of possible outputs of the algorithm: the set of pinpoints.
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For our example TBox T 1 with mips(T 1) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4,
ax7}} we first take the 2-ary core, {ax4}. Removing the MIPS containing ax4 leaves
{ax1, ax2}. Hence, there is a non-deterministic choice: if we choose ax1 to continue
{ax4, ax1} is the calculated pinpoint, otherwise {ax4, ax2}. Both are diagnoses of T1.



Chapter 3

DION2: a Bottom-Up Approach of
Ontology Diagnosis

3.1 General Idea

In this chapter we describe an informed bottom-up algorithm to calculate MUPS with the
support of an external DL reasoner. The main advantage of this approach is that it can
deal with any DL-based ontology supported by an external reasoner. Currently there exist
several well-known DL reasoners, like RACER1, FaCT++2, and Pellet3, each of which has
been proved to be reliable and stable. They support various DL-based ontology languages,
including OWL-DL.

Given an unsatisfiable concept A and a terminology T MUPS can be systematically
calculated by checking whether A is unsatisfiable in subsets T ′ of T of increasing size.
Such a procedure is easy to implement, but infeasible in practice. Even very simple real-
world terminology we considered in [25] have an average size of 5 axioms per MUPS and
417 axioms, which requires over 1011 calls to the external reasoner.

This observation implies that one has to control the subsets of T that are checked
for satisfiability of A by means of a selection function. Such a selection function selects
increasingly large subsets which are heuristically chosen to be relevant additions to the
currently selected subset. Although this approach is not guaranteed to give us the com-
plete solution set of MUPS it provides an efficient approach for debugging inconsistent
terminologies. We will now formally introduce the core notions of selection functions
and relevance.

Given a terminology T and an axiom ax, a selection function s is a function which
returns a linearly ordered collection of subsets of T . More formally, for an ontology

1http://www.sts.tu-harburg.de/∼r.f.moeller/racer/
2http://owl.man.ac.uk/factplusplus/
3http://www.mindswap.org/2003/pellet/

11



CHAPTER 3. DION2: A BOTTOM-UP APPROACH OF ONTOLOGY DIAGNOSIS12

language L, a selection function s is a mapping s : P(L) × L × N → P(L) such that
s(T , φ, k) ⊆ T .

In [12] we defined two different selection functions, the most simple one based on
co-occurrence of concept names in axioms. As in this document we focus on unfoldable
TBoxes,4 we introduce a slightly more complex selection function here. The basic idea
is that an axiom ax is relevant to a concept name A if, and only if, A occurs on the left-
hand side of ax. In a way this variant of the bottom-up approach mimics the unfolding
procedure in order to restrict the number of tests needed. This is the one implemented in
the DION system.

We use Vc(ax) (Vc(C)) to denote the set of concept names that appear in an axiom ax
(in a concept C, respectively). Concept-relevance is defined as follows:

Definition 6 An axiom ax is concept-relevant to a concept or an axiom φ iff
(i) Vc(C1) ∩ Vc(φ) 6= ∅ if the axiom ax has the form C1 v C2,
(ii) Vc(C1) ∩ Vc(φ) 6= ∅ or Vc(C2) ∩ Vc(φ) 6= ∅ if the axiom ax has the form C1 = C2,
(iii) Vc(C1) ∩ Vc(φ) 6= ∅ or Vc(C2) ∩ Vc(φ) 6= ∅ if the axiom ax has the form
disjoint(C1, C2).

Note that this approach is a syntactic one because, for example, the axiom ¬D v ¬C
is treated differently from the axiom C v D.

Based on this particular relevance function we can now, for a terminology T and a
concept A, define a selection function s as follows:

Definition 7 The concept-relevance based selection function for a TBox T and a concept
A is defined as

(i) s(T , A, 0) = ∅;
(ii) s(T , A, 1) = {ax | ax ∈ T and ax is concept-relevant to A};
(iii) s(T , A, k) = {ax | ax ∈ T and ax is concept-relevant to an

element in s(T , A, k − 1)} for k > 1.

3.2 Algorithms

We use an informed bottom-up approach to obtain MUPS. In logics and computer science,
an increment-reduction strategy is often used to find minimal inconsistent sets [6]. Under
this approach, the algorithm first finds a collection of inconsistent subsets of an incon-
sistent set, before it removes redundant axioms from this subsets. Similarly, a heuristic
procedure for finding MUPS of a TBox T and an unsatisfiable concept-name A consists
of the following three stages:

4Remember that the top-down is defined for unfoldable TBoxes only.
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k := 0
M(T , A) := ∅
repeat

k := k + 1
until A unsatisfiable in s(T , A, k) (*)
Σ := s(T , A, k)− s(T , A, k − 1)
S := s(T , A, k − 1)
W := {S}
for all φ ∈ Σ do

for all S ′ ∈ W do
if A satisfiable in S ′ ∪ {φ} and S ′ ∪ {φ} 6∈ W then

W := W ∪ {S ′ ∪ {φ}}
end if
if A unsatisfiable in S ′ ∪ {φ} and S ′ ∪ {φ} 6∈ M(T , A) then

M(T , A) := M(T , A) ∪ {S ′ ∪ {φ}}
end if

end for
end for
M(T , A) := MinimalityChecking(mups(T , A))
return M(T , A)

Figure 3.1: MUPS bottomup(T , A)

• Expansion: Use a relevance-based selection function to find two subsets Σ and S
of T such that a concept A is satisfiable in S and unsatisfiable in S ∪ Σ.

• Increment: Enumerate subsets of Σ to obtain the sets S” such that the concept A
is unsatisfiable in S” ∪ S . We call those sets A-unsatisfiable sets.

• Reduction: Remove redundant axioms from those A-unsatisfiable sets to get
MUPS.

Figure 3.1 describes an algorithm MUPS bottomup(T , A) based on this strategy to
calculate MUPS. The algorithm first finds two subsets Σ and S of T by increasing the
relevance degree k on the selection function until A is unsatisfiable in S ∪ Σ. Compared
with T , the set Σ can be expected to be relatively small. The algorithm then builds the
power-set of Σ to get A-unsatisfiable sets by adding an axiom φ ∈ Σ each time in the loop
to the sets S ′ in the working set W . If A is satisfiable in S ′ ∪ {φ}, then the set S ′ ∪ {φ}
is added into the working set to build up the union of each elements of the power-set of
Σ with the set S.5 If A is unsatisfiable in S ′ ∪ {φ}, then add the set S ′ ∪ {φ} into the
resulting set M(T , A) instead of the working set W . This avoids the calculation of the
full power-set of Σ because any superset of S ′∪{φ} in which A is unsatisfiable is pruned.

5Namely {S′/S|S′ ∈ W} ⊆ P(Σ)
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Figure 3.2: MinimalityChecking(M(T , A))
for all M ∈ M(T , A) do

M ′ := M
for all ax ∈ M ′ do

if A unsatisfiable in M ′ − {ax} then
M ′ := M ′ − {ax}

end if
end for
M(T , A) := M(T , A)− {M} ∪ {M ′}

end for
return M(T , A)

Finally, by checking minimality we obtains MUPS. The procedure to check minimality
of the calculated subsets of T is described in Figure 3.2.

Proposition 3.2.1 The algorithm MUPS bottomup(T , A) of figure 3.1 is sound. This
means that it always returns MUPS, i.e. that M(T , A) ⊆ mups(T , A), for any output
M(T , A).

PROOF. It follows from the construction of the sets in the collection M(T , A) in
MUPS bottomup(T , A) that the concept A is always unsatisfiable for any element S in
M(T , A). Otherwise it would have never been added in the first place. Minimality is
enforced by the procedure MinimalityChecking(M(T , A)). 2

Take our running example. To calculate M(T1, A1), the algorithm first gets the set
Σ = {ax2, ax3} = {ax1, ax2, ax3} − {ax1}. Thus, M(T1, A1) = {{ax1, ax2}}. What
has to be noted is that the algorithm cannot find that S1 = {ax1, ax3, ax4, ax5} is a MUPS
for T1 and A1. This points to the incompleteness of our algorithm. The problem is the
stopping condition of the expansion phase (denoted by (∗) in the algorithm). This con-
dition means that only the MUPS with axioms with maximal relevance with regard to
the unsatisfiable concept will be found. In principle, the rigid stopping condition (∗) in
MUPS bottomup(T , A) could easily be replaced by a full expansion, i.e. by a condi-
tion which requires saturation of the selection process. However, as the primary goal of
our implementation was practical applicability, the MUPS bottomup(T , A) algorithm is
implemented in DION as described above.
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3.3 Implementation of DION2

3.3.1 General Consideration

We have implemented a prototype DION as a debugger of inconsistent ontologies in [26].
The system is implemented as an intelligent interface between an application and state-
of-the art description logic reasoners and provides server-side functionality in terms of
an XML-based interface for uploading an inconsistent ontology and posing queries for
debugging. Requests to the server are analyzed by the main control component that also
transforms queries into the underlying query processing. The main control element also
interacts with the ontology repository and ensures that the reasoning components are pro-
vided with the necessary information and coordinates the information flow between the
reasoning components.

Figure 3.3: Architecture of DION.

An overview of the DION architecture is shown in Figure 3.3. It has the following
components:

• DION Server: The DION server acts as a server which deals with requests from
other ontology applications.

• Main Control Component: The main control component performs the main pro-
cessing, like query analysis, query pre-processing, and interacting with the ontology
repositories.

• Selection Functions: The relevance-based selction function component provides
heuristic facilities to evaluate the queries.
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• DIG Client: DION’s DIG client is the standard XDIG client, which calls external
DL reasoners which support the DIG interface to obtain the standard DL reasoning
capabilities.

• Ontology Repositories: The ontology repositories are used to store ontologies and
other system specifications.

The DION prototype is implemented in Prolog and uses the XDIG interface [13], an
extended DIG description logic interface for Prolog6. DION is designed to be a simple
API for a general debugger with inconsistent ontologies. It supports extended DIG re-
quests from other ontology applications, including OWL and DIG [3]7. This means that
DION can be used as an interface of an inconsistent ontology debugger as it supports the
functionality of the underlying reasoner by just passing requests on and provides reason-
ing functionalities if needed. Therefore, the implementation of DION will be independent
of those particular applications or systems. DION2 is an extension of DION.

3.3.2 Functionalities

The prototype of DION2 has the following characteristics:

• Debugging Support: calculates MUPS, MIPS, cores, and pinpoints

• Interface Support: supports the XDIG interface, an extended DIG interface.

• Ontology Languages: supports the DIG format as well as the OWL language.
Ontological data in the OWL format is translated automatically by the XDIG com-
ponent ’owl2dig’.

• Multiple Platforms: supports the Windows/Linux/Unix platforms

• Integration with external DL reasoners: integrated with external DL reasoners,
like RACER and KAON2, via their DIG interfaces.

• Preprocessing Support: supports more fine-grained debugging by pre-processing
ontology data.

3.3.3 Installation and Test Guide

1. Download: The DION2 package is available from the DION website:

http://wasp.cs.vu.nl/sekt/dion/dion2.zip

6http://wasp.cs.vu.nl/sekt/dig
7http://dl.kr.org/dig/
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Figure 3.4: DION2 testbed

Unzip the DION package into a directory.

2. Installation of SWI-Prolog: PION requires that SWI-Prolog (version 5.6.0 or
higher) has been installed on your computers. It can be downloaded from the SWI-
Prolog website:

http://www.swi-prolog.org

3. Installation of External DL Reasoners: DION requires an external DL rea-
soner which supports the DIG interface, like RACER (version 1.7.14 or higher)
or KAON2. Other DL reasoners may work for DION2 if they support the DIG DL
interface, however, they have not yet been tested.

3.3.4 DION2 Testbed

The DION2 testbed ’dion test.htm’ is a DION2 client with a graphical interface, which is
designed as a webpage. Therefore it can be launched from a web browser which supports
Javascript. A screenshot of the DION2 testbed, is shown in Figure 3.4.
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The current version of the DION2 testbed supports tests for which both the DION2
server (with default port: 8004) and the external DL reasoner (with the default port:
8000) are running on the localhost. The default hostname of the DION server and the
external DL reasoner is ’localhost’. For a DION2 server which runs on a remote host,
change the host and port data in the ’dionmain.htm’ file. Namely, replace the URL
’http://127.0.0.1:8004’ with another valid URL.

Before starting the DION2 test, make sure that the DION2 server and the external DL
reasoner (i.e. RACER) are running at the host with the correct ports.

1. Launch RACER: Racer can be launched by the following command:

racer -http 8000

Alternatively, click on the file ’racer8000.bat’ if the DION2 downloaded package
includes the reasoner RACER and the batch file. KAON2 can be launched with its
DIG interface at the port ’8000’ by the following command:

java -cp kaon2.jar org.semanticweb.kaon2.server.ServerMain
-dig -digport 8000 -ontologies "."

2. Launch DION2 server: click on the file ’dion server.pl’ in the DION2 directory.
If you encounter the global stack limit problem because of a big amount of test data,
you should increase the size of the global stack. The windows users can edit the
path setting of ’plwin.exe’ in the file ’dionserver bigGlobalStack.bat’, then launch
it.

The TELL and ASK request data can be copied into the TELL text area and the ASK
text area respectively. After that, you can click on the buttons ’Tell’ and ’Ask’ to make the
corresponding requests. The request data can also be posted from any application without
using the DION2 testbed. That is useful if the test data exceeds the text area limit.



Chapter 4

Experiment

4.1 SEKT Ontology Learning Data

Among the most interesting new developments within the SEKT project one surely has
to mention the efforts of the Text2Onto team in learning expressive ontologies. Often the
potential of ontologies cannot be fully exploited, because information such as disjointness
of concepts is not made explicit, and as a consequence, possible modeling errors remain
undetected.

In Deliverable 3.3.3 [27] a number of learning features for disjointness axioms, and
their use in a classifier, are described. The general idea is that there are different meth-
ods to estimate disjointness of two concepts, e.g. based on taxonomic overlap, semantic
similarity, linguistic patterns etc., which are automatically combined by a machine learn-
ing classifier. Given a gold-standard, this classifier would basically be trained to predict
whether an unseen pair of two concepts is disjoint or not.

Obviously, the problem of this approach is that a gold standard is needed, i.e. an
agreed-upon collection of pairs of disjoint and non-disjoint concepts. In [27] the authors
describe several experiments to construct such a gold-standard. Some of the most im-
portant findings from their perspective are that disjointness seems to be very difficult to
understand for humans, and that it can be captured surprisingly well by automatic means.
More surprising fact is that the agreement among the experts was not much higher than
the agreement among the students.

Another finding of the experiments was that even disjointness axioms introduced by
full agreement of all annotators can, if included in the ontology, lead to incoherence, i.e.
logical contradictions. To investigate the cause of this contradiction we applied DION to
debug the newly constructed ontologies.

19
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4.1.1 Disjointness Statement in PROTON

The PROTON Ontology (PROTo ONtology) is an ontology which is developed in the
scope of the SEKT Project1. For their experiments the authors of [27] constructed a
representative data-set consisting of 2000 pairs of classes from PROTON, which they
randomly assigned to 30 different people of two different levels expertise in ontology
management. Each pair was tagged by 6 different people. Each of the annotators was
given around 400 pairs along with natural language descriptions of the classes whenever
those were available. Possible taggings for each pair were + (disjoint), (not disjoint)
and ? (unknown). Based on the expertise of the annotators, and the required level of
inter-annotator agreement several ”gold standards” were developed. Deliverable 3.3.3
[27] discusses in detail the annotations of the different groups

4.1.2 Debugging Inconsistency in Extended PROTON

The first annotated data-set we focus on in this Deliverable is the one where a pair of
concepts is only then considered to be disjoint when all 6 annotators agree, i.e. the data-
set with disjointness statements of highest confidence. These disjointness statements are
added to the PROTON ontology, an upper level ontology described in detail in SEKT De-
liverable 1.8.1. The authors call the resulting ontology proton 100 all.owl, which
stands for an extension of PROTON with disjointness statements where all annotators
have to agree (100%).

Adding the disjointness statements results in a number of unsatisfiable concepts.

<unsatisfiableConcept ontology="proton_100_all.owl" number="3">
<catom name="ns:Reservoir"/>
<catom name="ns:Harbor"/>
<catom name="ns:Canal"/>

</unsatisfiableConcept>

This means that there are three concepts, which are unsatisfiable: Reservoir, Harbor
and Canal. This is the standard output of any reasoner, i.e. Racer or KAON.

For these unsatisfiable concepts we calculate the minimal subsets of the ontology
(MUPS) which retain the concept still unsatisfiable. Basically, this means that these sub-
ontologies still contain a logical contradiction (which might point to an error). These
MUPS are in the XML output of DION:

<MUPSs concept = "ns:Canal" number = "1" timecost = "0:3:11:252">
<mups>
<disjoint>

1http://proton.semanticweb.org/
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<catom name = "ns:Facility"/>
<catom name="ns:WaterRegion"/>

</disjoint>
<impliesc>

<catom name = "ns:Canal"/>
<catom name ="ns:Channel"/>

</impliesc>
<impliesc>

<catom name = "ns:Canal"/>
<catom name = "ns:HydrographicStructure"/>

</impliesc>
<impliesc>

<catom name = "ns:Channel"/>
<catom name ="ns:WaterRegion"/>

</impliesc>
<impliesc>

<catom name = "ns:HydrographicStructure"/>
<catom name = "ns:Facility"/>

</impliesc>
</mups>
</MUPSs>

and similarly for the other MUPS. From these MUPS we calculate the MIPS: re-
member, a MIPS is a minimal subset of the ontology which maintains incoherence, i.e.
unsatisfiability of at least one unsatisfiable concept. These MIPS contain at least one ”er-
ror”, they are orthogonal to classical ”diagnoses”. They are not unique. In this example
there are three different ones.

The three MIPS are

[[
axiom(’ns:Facility_disjoint’),
axiom(’ns:Reservoir_ns:HydrographicStructure_impliesc’),
axiom(’ns:Reservoir_ns:Lake_impliesc’),
axiom(’ns:HydrographicStructure_ns:Facility_impliesc’),
axiom(’ns:Lake_ns:WaterRegion_impliesc’)
],

[
axiom(’ns:HydrographicStructure_ns:Facility_impliesc’),
axiom(’ns:Facility_disjoint’),
axiom(’ns:Harbor_ns:HydrographicStructure_impliesc’),
axiom(’ns:Harbor_ns:WaterRegion_impliesc’)
],

[
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axiom(’ns:Facility_disjoint’),
axiom(’ns:Canal_ns:Channel_impliesc’),
axiom(’ns:Canal_ns:HydrographicStructure_impliesc’),
axiom(’ns:Channel_ns:WaterRegion_impliesc’),
axiom(’ns:HydrographicStructure_ns:Facility_impliesc’)
]].

Here each of the axiom(...) is an abbreviation for the following:

axiom(’http://ns:Facility_disjoint’) =
<disjoint>

<catom name="ns:Facility"/>
<catom name="ns:WaterRegion"/>

</disjoint>

axiom(’ns:Reservoir_ns:HydrographicStructure_impliesc’)=
<impliesc>

<catom name="ns:Reservoir"/>
<catom name="ns:HydrographicStructure"/>

</impliesc>

axiom(’ns:Reservoir_ns:Lake_impliesc’)=
<impliesc>

<catom name="ns:Reservoir"/>
<catom name="ns:Lake"/>

</impliesc>

etc.

So what do the MIPS tell us? Let’s take again the first one:

[[
axiom(’ns:Facility_disjoint’),
axiom(’ns:Reservoir_ns:HydrographicStructure_impliesc’),
axiom(’ns:Reservoir_ns:Lake_impliesc’),
axiom(’ns:HydrographicStructure_ns:Facility_impliesc’),
axiom(’ns:Lake_ns:WaterRegion_impliesc’) ],

If we take a subset of the ontology (in a more DL like notation):

Facility 6=WaterRegion
ReservoirvHydrographicStructure
ReservoirvLakevHydrographicStructurevFacility
LakevWaterRegion
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we have a minimal set of axioms making the ontology incoherent. Take one away, and
the remaining ontology becomes coherent. This means that one of the axioms might be
”incorrect”. There are now 3 different of these MIPS.

But which one is the most likely candidate to be incorrect? The classical ”diagnosis”
way is to look at all the MIPS, and find the minimal hitting sets. But this is computation-
ally impossible, so that we have a heuristic to find a small set of axioms that needs to be
fixed to remove the logical contradiction. There are two different pinpoints:

[axiom(’ns:Facility_disjoint’)],

and

[axiom(’ns:HydrographicStructure, ns:Facility_impliesc’)]]

(these only have 1 element, but this is not necessarily so).

This means (e.g. for the first pinpoint): deleting the axioms in the pinpoint (here it is
just one) makes your ontology logically correct, and there is almost always no smaller set
of deletion axioms. So, in the spirit of Occam’s razor we suggest that these axioms are
the best axioms to be fixed for your ontology.

More concretely these are the axioms disjoint(Facility,WaterRegion)
and HydrographicStructurev Facility.

According to this analysis, both axioms are erroneous with equal likelihood. So, for
this particular set of unsatisfiable concepts (reservoir, harbour, canal) you
now have two axioms, each of which could be erroneous, and fixing one of which will
suffice to make your ontology consistent.

The ontology including PROTON and only disjointness axioms agreed by all annota-
tors only contains 3 unsatisfiable concepts. The situation is much worse in the case when
disjointness axioms are added to PROTON which were agreed upon by 3 ontology mod-
eling experts (instead of 6 random annotators). In this case, an analysis using a debugging
tool such as DION can even be more useful to determine the cause of a logical error.

On the other hand, since only one of these axioms was generated automatically, it
might be reasonable to assume that this one is incorrect. Moreover, confidence or rele-
vance information acquired during the ontology learning process might help to select the
axiom, which is most likely to be incorrect2.

4.1.3 Summary

Learning expressive statements about ontologies, and extending existing ontologies with
expressive statements (such as disjointness statements) is a difficult issue, which can eas-

2http://www.aifb.uni-karlsruhe.de/Publikationen/showPublikation?publ id=1007
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ily lead to inconsistencies, even if the utmost care is taken to ensure the highest quality of
new axioms.

This makes the existence of automatic debugging support existential whenever the ex-
pressiveness of an ontology is increased. This holds both for the case of carefully selected
extensions (such as shown in the above example), and even more so when the extensions
are learned automatically. Combining ways of automatically learning expressive ontol-
ogy axioms with debugging is one of foremost challenges for the proposed methods of
this deliverable.

4.2 SEKT Legal Ontologies

The aim of SEKT is to develop and exploit semantically-based knowledge technologies in
order to support document management, content management, and knowledge manage-
ment in knowledge intensive workplaces. Specifically, SEKT aims at designing appro-
priate utilities to users in three main areas: digital libraries, the engineering industry, and
the legal domain, providing them with quick access to the right pieces of information at
the right time. SEKT legal otologies are developed for the SEKT legal case study. More
details regarding the legal case study can be found in SEKT deliverable D10.2.1[4].

In the legal case study, the accomplished tasks so far provide both the quantitative
and qualitative data necessary to assess both the context of users, (newly recruited Span-
ish judges), and their specific needs with regard to the technology under development.
In particular, these data give an insight on institutional, organizational, and individual
constraints that could either facilitate or block the introduction of SEKT technologies in
judicial units. From this set of data, the Ontology of Professional Judicial Knowledge is
built.

The data (nearly 800 competency questions) gathered from judicial interviews by the
legal case study, allows the construction of an ontology based on professional judicial
knowledge. Knowledge derived from the daily practice at courts. The Ontology of
Professional Judicial Knowledge (OPJK) developed by the legal case study team has been
learnt from scratch out of nearly 400 competency questions and has, currently, nearly
104 classes and 567 instances. The following top domain concepts have been identified:
Acto Procesal, Organo Judicial, Calificacion Jurdica,Documento Procesal,
Fase Procesal, Jurisdiccion, Proceso Judicial, Profesion Jurdica,
Rol Procesal, Rol Familiar and Sancion.

The OPJK ontology constitutes the core of the legal case study within SEKT, as it
links natural language questions (formulated by newly recruited Spanish judges) with a
repository of frequently asked questions (FAQs) with their corresponding answers pro-
vided by more experienced judges. To this aim, OPJK contains definitions for the most
relevant judicial terms in the professional knowledge of law professionals with respect to
this set of FAQs. As this is highly specialized knowledge producing a new version of the
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OPJK is a difficult task. In practice, a team of legal experts meets in regular intervals to
decide on the relevant changes to the OPJK where the decision is taken w.r.t. the questions
in the FAQs.

The current version of the OPJK ontolgoy is specified in RDF/RDFS data format. It
does not cause the inconsistency problem because of its limited language expression. To
enhance the semantics of the SEKT legal ontologies, we convert the OPJK data from
RDF/RDFS into DIG first, then add disjointness statements for sibling concepts into
OPJK. This procedure is called semantic enhancement in [23]. We obtain 26 disjoint-
ness statements by an automatic computation of sibling relations.

Here are some disjointness statements of OPJK in DIG format:

<disjoint>
<catom name="Situacion"/>
<catom name="Evento"/>
<catom name="Acto"/>

</disjoint>

<disjoint>
<catom name="Fase_de_Juicio_oral"/>
<catom name="Fase_de_ejecucion_penal"/>
<catom name="Fase_de_instruccion"/>

</disjoint>

<disjoint>
<catom name="Fase_de_alegaciones"/>
<catom name="Fase_de_prueba"/>
<catom name="Fase_de_Conclusiones"/>

</disjoint>

<disjoint>
<catom name="Conyuge"/>
<catom name="Progenitor"/>

</disjoint>

<disjoint>
<catom name="Estado_Temporal"/>
<catom name="Estado_Proceso"/>
<catom name="Estado_Mental"/>
<catom name="Estado_Fisico"/>

</disjoint>

<disjoint>
<catom name="Fase_Procesal_Penal"/>
<catom name="Fase_Procesal_Civil"/>

</disjoint>

<disjoint>
<catom name="Administracion_Publica"/>
<catom name="Empresa"/>
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</disjoint>

<disjoint>
<catom name="Mayoraa_de_Edad"/>
<catom name="Minoraa_de_Edad"/>

</disjoint>

Adding those disjoint axioms on OPJK, we obtain an inconsistent OPJK ontol-
ogy in which there exist thres unsatisfiable concepts: Profesion Juradica Liberal,
Funcionario Judicial, and Profesion Juradica. We use this inconsistent OPJK on-
tology as a test data on DION2.

DION2 finds the following MUPS for those unsatisfiable concepts:

<MUPSs concept="Funcionario_Judicial" number="1" timecost="0:0:0:460">
<mups>

<disjoint>
<catom name="Rol_Familiar"/>
<catom name="Rol_Negocio_Juradico"/>
<catom name="Rol_Procesal"/>
<catom name="Rol_Profesional"/>

</disjoint>
<impliesc>

<catom name="Funcionario_Judicial"/>
<catom name="Profesion_Juradica"/>

</impliesc>
<impliesc>

<catom name="Profesion_Juradica"/>
<catom name="Rol_Procesal"/>

</impliesc>
<impliesc>

<catom name="Profesion_Juradica"/>
<catom name="Rol_Profesional"/>

</impliesc>
</mups>

</MUPSs>

<MUPSs concept="Profesion_Juradica_Liberal" number="1" timecost="0:0:0:451">
<mups>

<disjoint>
<catom name="Rol_Familiar"/>
<catom name="Rol_Negocio_Juradico"/>
<catom name="Rol_Procesal"/>
<catom name="Rol_Profesional"/>

</disjoint>
<impliesc>
<catom name="Profesion_Juradica_Liberal"/>
<catom name="Profesion_Juradica"/>

</impliesc>
<impliesc>
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<catom name="Profesion_Juradica"/>
<catom name="Rol_Procesal"/>

</impliesc>
<impliesc>
<catom name="Profesion_Juradica"/>
<catom name="Rol_Profesional"/>

</impliesc>
</mups>

</MUPSs>

<MUPSs concept="Profesion_Juradica" number="1" timecost="0:0:0:269">
<mups>
<disjoint>
<catom name="Rol_Familiar"/>
<catom name="Rol_Negocio_Juradico"/>
<catom name="Rol_Procesal"/>
<catom name="Rol_Profesional"/>

</disjoint>
<impliesc>
<catom name="Profesion_Juradica"/>
<catom name="Rol_Procesal"/>

</impliesc>
<impliesc>

<catom name="Profesion_Juradica"/>
<catom name="Rol_Profesional"/>

</impliesc>
</mups>

</MUPSs>

We can see that the MUPS for the concept Profesion Juradica is a subset of
the MUPS of two other unsatisfiable concepts. Thus we can consider only the MUPS
for the unsatisfiable concept Profesion Juradica. We use disjoint(Rol Familiar),
impliesc1 and impliesc2 to denote those three axioms in the MUPS respectively. The
MIPS of the OPJK ontology is the set {disjoint(Rol Familiar), impliesc1, impliesc2}.
Since there exists only one MIPS for the OPJK ontology, naturally the pinpoint for the
OPJK debugging consists of only those three axioms. We observe that removing the ax-
iom disjoint(Rol Familiar), i.e., the disjoint axiom on the concepts Rol Familiar and
Rol Procesal and Rol Profesional can restore the consistency of the OPJK ontology
sufficiently.

4.3 Preprocessing of Inconsistent Ontologies

For an inconsistent ontology, DION2 can find pinpoints show which axioms should be
removed from the inconsistent ontology to restore the consistency. Sometimes it is more
useful to remove parts of axioms instead of whole axioms. For example, for a subsump-
tion axiom C v D1 ∧ D2 which appears in a pinpoint, we would not remove the whole
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axiom C v D1 u D2 from an inconsistent ontology, but just remove part of axiom, say
C v D1, from the ontology. The removal can sufficiently disqualify the whole axiom
sufficiently. This approach allows us to achieve more fine-grained debugging. In order
to achieve it, DION2 will do preprocessing on an inconsistent ontology when it is loaded
into the system.

Under this preprocessing procedure, an axiom is converted into several sub-axioms,
which are semantically equal to the original axiom. The following are the conversion
rules which are used in DION2. An axiom which has the form of the left hand part of a
conversion rule is replaced with a set of axioms by the right hand part of the conversion
rule. Namely, when an axiom is loaded, it is checked whether or not it can be converted
by one of the following rules. If yes, then the axiom is replaced with a set of new axioms.
Those newly created axioms are checked further to see whether or not they can be applied
by one of the conversion rules further until there are no new axioms can be created by the
conversion.

• Conjunction Decompostion
C v (D1 uD2 . . . Dn) ⇒ {C v D1, C v D2, . . . , C v Dn}.

• Equivalence Decomposition
C = D ⇒ {C v D, D v C}.

• Existence Conversion
C v ∃R.(E1 u E2 . . . u En) ⇒ {C v ∃R.E, E = (E1 u E2 . . . u En)}
where E is a new named concept.

• Universal Conversion
C v ∀R.(E1 u E2 . . . u En) ⇒ {C v ∀R.E, E = (E1 u E2 . . . u En)}
where E is a new named concept.

For an axiom, only one conversion rule can be used each time, because the left hand
side of conversion rules are different each other. It is also easy to see that the conversion
algorithm can terminate.

Taking our working example which is discussed in Chapter 2, DION2 finds the fol-
lowing two pinpoints without the preprocessing:

{A4 v ∀s.B u C, A1 v ¬A u A2 u A3}

{A4 v ∀s.B u C, A2 v A u A4}

With the preprocessing, DION2 finds the three more fine-grained pinpoints:

{A4 v ∀s.B,A1 v A2}

{A4 v ∀s.B,A1 v ¬A}
{A4 v ∀s.B,A2 v A}



Chapter 5

Discussion and Conclusions

5.1 Related Work

In this section, we briefly discuss the most important related work in the literature. In
our earlier conference publications [22] we were the first to propose the framework for
debugging and diagnosing of terminologies that is defined in Chapter 2. There we also
coined the term pinpointing as a means of reducing a logically incorrect terminology to
a smaller one, from which a modeling error could be more easily detected by a human
expert. In [24] we grounded notions of MIPS and MUPS in the well-established theory
of model-based diagnosis [20].

The area of debugging inconsistent ontologies has received much attention since the
publication of [22]. In this section we do not aim to give a general literature survey,
but discuss some of the most influential pieces of work, in particular the work by the
MindSwap group, and the work based on belief revision.

5.1.1 Debugging in the DL community

The MindSwap group at the University of Maryland has done significant work in this area,
culminating in the recent thesis of Kalyanpur [14]. The work investigates two different
approaches, one based on modifying the internals of a DL reasoner (the so-called “glass
box” approach), and one based on using an unmodified external reasoner (the “black box”
approach).

The glass box approach is closely related to our work of the top-down approach, and
(just as our work) is based on the techniques in [1]. The work deals with OWL-Lite,
except for maximum cardinality roles, and is efficient since it avoids having to do full
tableau saturation (details are in [16]). The work in [1] is particularly noteworthy: Al-
though that paper is about a different topic (computing extensions for a certain class of
default Description Logics), it turns out that one of the algorithms is very similar to the
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one described in section 2. The main difference to Baader et. al’s work is that they con-
sider ABoxes instead of TBoxes, and the purpose of the algorithm (computing default
extensions vs. computing diagnoses).

The black box approach (i.e.. detecting inconsistencies by calling an unmodified ex-
ternal DL reasoner) is based on Reiter’s Hitting Set algorithm (similar to our work in [24]),
and also closely related to a proposal of Friedrich et al. [7] who (as we do in section 2.2.1)
bring the general diagnostic theories from [20] to bear for diagnosing ontologies. An in-
teresting difference with our work is that Friedrich et. al use generic diagnoses software.
As we do in our bottom-up method, they use a DL reasoner as oracle.

Kalyanpur also proposes a method for “axiom pinpointing”1, which rewrites axioms
into smaller ones, and then debugs the resulting ontology after rewriting, with the effect
that a more precise diagnosis is obtained. Early results have been reported in [15]

A second pinpointing technique called “error pinpointing” by Kalyanpur is similar
to what we call pinpointing here. Interestingly, Kalyanpur has performed user studies
which reveal that a combination of axiom pinpointing (i.e.. breaking large axioms up
into smaller ones) and error pinpointing (i.e. finding the errors which lie at the root of a
cascading chain of errors) together seems to be the cognitively most efficient support for
users.

Finally, a significant extension to our work in [22] was published in [18], where the
authors extend our saturation based tableau calculus with blocking conditions, so that
general TBoxes can be handled.

5.1.2 Belief revision

Much of the work in the belief revision community over the past twenty years has focused
on dealing with inconsistency, and significant advances have been made [10]. Neverthe-
less, there are significant differences which cause this work to be not directly applicable
to ontology revision. First of all, most of the work on belief revision is phrased in terms
of a so called “belief base”, a deductively closed set of formulae. Much of the interest in
dealing with inconsistent ontologies is to deal with sets of axioms that are not deductively
closed, and on which deduction has to be performed in order to find out inconsistencies
and their causes. Furthermore, theories of belief revision typically assume a preference
ordering among all models of a belief base, representing an order of implausibility among
all situations. Such an approach is also taken in [17] which imposes a stratification on the
knowledge base, and employing this stratification to select a suitable repair.

There has been work on belief revision that does not rely on deductively closed belief
bases, and hence is more relevant to our work. One such example is [9], from whom we
have taken the notion of a syntactic relevance function. (Such a syntactic relevance func-

1A different use of the word pinpointing from our use in section 2.2.2, and even from the equivalent
term ”axiom pinpointing” in [22].
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tion only makes sense when abandoning the notion of deductively-closed belief bases,
since an immediate consequence of working with deductively closed belief bases is that
equivalent formulae should be treated equally, a.k.a. the principle of irrelevance of syn-
tax). Our work in section 3 can be seen as a specialization to ontologies of the general
framework presented in [9].

5.2 Conclusion

We present a formal characterization for debugging and diagnosis (briefly repeated from
earlier publications); we define algorithms for all tasks described in our debugging frame-
work; we study the effectiveness of our proposal in a realistic setting on life-size termi-
nologies; we perform a set of controlled experiments to analyst the computational prop-
erties of the debugging problem and our different algorithms for solving it in [25].

We have implemented DION2, a new prototype of DION as its extension, based on
the bottom-up approach of inconsistent ontology debugging. The new functionalities of
DION2 include multiple platform support, integration with KAON2, fine-grained debug-
ging by preprocessing. In this document, we also report two experiments of DION2 with
SEKT case study data: one from SEKT ontology learning data and one from SEKT legal
ontologies. Those preliminary tests show that how DION2 can be used for inconsistent
ontology diagnosis and repair in realistic application scenarios.
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[3] Sean Bechhofer, Ralf Möller, and Peter Crowther. The dig description logic inter-
face. In International Workshop on Description Logics (DL2003). Rome, September
2003.

[4] P. Casanovas, M. Poblet, N. Casellas, J-J. Vallbé, F. Ramos, V.R. Benjamins,
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