
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

Reasoning with Multi-version
Ontologies: Evaluation

Zhisheng Huang, Stefan Schlobach, Frank van Harmelen, and
Michel Klein

(Vrije Universiteit Amsterdam)

Nuria Casellas and Pompeu Casanovas
(Universitat Autonoma de Barcelona)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.5.2(WP3.5)
In this document, we present an evaluation of the Multi-version Ontology Reasoning system
MORE. The framework of MORE is developed based on a temporal logic approach. We take
multiple versions of the legal ontology OPJK, one of the case studies in the SEKT project, as
the test data set to test the prototype of the multi-version ontology reasoning system MORE, by
which we investigate and evaluate the applicability of the system.
Keyword list: ontology evaluation, ontology versioning, ontology reasoning, legal ontology

Copyright c© 2006 Department of Artificial Intelligence, Vrije Universiteit Amsterdam

Document Id.
Project
Date
Distribution

SEKT/2006/D3.5.2/v1.0.0
SEKT EU-IST-2003-506826
August 10, 2006
public

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe, Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom Bösser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

In SEKT D3.5.1 we develop a framework of the multi-version ontology reasoning system
MORE, based on a temporal logic approach. In this document, we present an evaluation
of the system MORE. We take multiple versions of the legal ontology OPJK, one of the
case studies in the SEKT project, as the test data set to test the prototype of the multi-
version ontology reasoning system MORE. In this document we develop a framework to
examine and analyze ontology changes and their effect on multi-version ontologies. We
examine how the system MORE can support this framework of ontology versioning and
its effect analysis. By the quantitative analysis of the effect, we can show various dynamic
behavior of the ontologies, which provides a convenient approach for knowledge workers
to obtain a better understanding on ontologies. The test indicates that the system MORE
can serve as a tool for multiple versioning of ontologies.

Contents

1 Introduction 2

2 MORE: a Multi-version Ontology Reasoning System 4
2.1 Version Space and Temporal Logics . 4
2.2 Functionalities of MORE . 6
2.3 Ontology Comparison . 6
2.4 RDF/RDFS Data Support . 9

3 Legal Ontologies and Versioning 14
3.1 The SEKT legal case study . 14
3.2 The OPJK versioning space . 15
3.3 Analysing the OPJK versioning space 16

4 Tests, Analysis, and Evaluation 17
4.1 Ontology Versioning and Effect Space 17
4.2 Ontology Change Measure on the Version Level 18

4.2.1 Stability Measure . 18
4.2.2 Difference Measure . 22
4.2.3 Monotonicity Measure . 25

4.3 Ontology Change Measure on the Concept Level 26
4.3.1 Stability Measure . 26
4.3.2 Difference Measure . 27
4.3.3 Monotonicity Measure . 29

4.4 Ontology Change Measure in the Semantic Relation Level 31
4.5 Summary of the Analysis and the Findings 33

5 Discussion and Conclusions 34

1

Chapter 1

Introduction

Ontologies are the backbone of the Semantic Web, as they allow to share vocabulary
in a semantically sound way. With the raise of the Semantic Web, the need to create
ontologies has become more prominent, and even highly sensitive applications depend
on ontologies, which in turn have to be of the highest possible quality. Unfortunately,
building such a high-quality ontology is a very time-consuming process that often requires
highly qualified professionals and domain experts over a significant time span.

Often, building an ontology can take years, and many different versions are produced
(these versions are often called the versioning space). In this process, keeping track of
modeling decisions and changes is an extremely difficult task, for the success of which a
dedicated versioning system is necessary. Versioning systems are known from Software
Engineering, but they are restricted to keeping track of syntactic changes. In the devel-
opment of an ontology the more significant changes are often semantical. For example,
adding an intermediate class to a class and its subclass will involve a syntactic change,
but leaves the original subclass relation semantically intact (due to inheritance).

What can be the concrete added value of such a semantic versioning system? The
most obvious use is the support of a knowledge engineer in her job of improving the
ontology at hand. What use is it to introduce a relation that is already in the ontology? A
versioning system might point her to the fact. More importantly, is it useful to introduce
a fact, that has previously been removed from the ontology? A versioning system could
point the knowledge engineer to this case, because it might suggest that a correction of
the fact has previously taken place1.

But a versioning system can also be used to analyze more general properties of the
versions space. Consider a situation, where people work on the same ontology, who
disagree on a particular relation between two classes. In the development process, the
disputed relation will probably not remain stable, i.e. in some versions the relation will
hold, in others it will not, according to who edited the latest version. Such an unstable
situation can be very damaging for the overall quality of an ontology, and it is important
to detect unstable relations. Part of the task of a versioning system should be to detect

1See Chapter 4 for a detailed analysis.

2

CHAPTER 1. INTRODUCTION 3

instable relations or similar ”problems” in the versioning space. For this purpose, we
developed the system MORE, a Multi-versions Ontology Reasoning system, at the Vrije
Universiteit Amsterdam as part of the European Union’s SEKT project.

One of the three use cases of the SEKT project [BCB+04, CCLCL05, CPC+05b,
CPC+05a] is a legal case study, in which an ontology is used to map questions of junior
judges to a set of predefined frequently asked questions and their answers by experienced
legal experts. In this context, the ontology OPJK (which stands for ’ontology for profes-
sional judicial knowledge’) has been developed over the past two years. To evaluate our
versioning framework we are currently recording the versioning space for the develop-
ment of the OPJK. Herewith we have two aims: first, to want to evaluate the effectiveness
of our versions system MORE, and secondly, we want to find epistemological properties
of the versioning space.

In this document, we focus on the former, i.e. we present an evaluation of the Multi-
version Ontology Reasoning system MORE. The framework of MORE is based on a
temporal logic approach. We take multiple versions of the legal ontology OPJK as the
test data set to test the prototype of Multi-version ontology reasoning system MORE. In
this document we develop a framework to examine and analyze ontology changes and
their effects on multi-versioning. We test how MORE can be used to support reasoning
and management of multi-version ontologies. The tests show that the system MORE can
serve as an efficient tool for multiple versioning of ontologies.

This document is organized as follows: Chapter 2 is an overview on the system
MORE, and shows the new functionalities and extensions to MORE. Chapter 3 overviews
the legal ontology, which serves as the case study for multi-version ontology reasoning.
Chapter 4 presents the evaluation tests on MORE. Chapter 5 discusses further work, and
concludes the document.

Chapter 2

MORE: a Multi-version Ontology
Reasoning System

2.1 Version Space and Temporal Logics

MORE is a multi-version ontology reasoning system, which is based on a temporal logic
approach[HS05a, HS05b]. Under this approach, multi-versions of an ontology are con-
sidered as a sequence of ontologies which are connected each other via change operations.
Each of these ontologies has a unique name. Thus, a version space S over an ontology set
Os is a set of ontology pairs, namely, S ⊆ Os×Os. We use version spaces as a semantic
model for our temporal logic, restricting our investigation to version spaces that present a
linear sequence of ontologies. A linear version space S on an ontology set Os is denoted
as a finite sequence S of ontologies as S = (o1, o2, · · · , on). We use S(i) to refer the
i th ontology oi in the space. For a version space S = (o1, o2, · · · , on), We call the first
ontology S(1) in the space the initial version of the version space, and the last ontology
S(n) the latest version of the version space respectively. An ordering < with respect to a
version space S is introduced as o < o′ iff o occurs prior to o′ in the sequence S. We use
ontology(S) to denote the ontology set Os = {o1, · · · , on} of the version space S.

A temporal logic has been developed in MORE for Multi-version Reasoning[HS05a,
HS05b]. The Language L+ of the temporal logic LTLm is defined as an extension to
the ontology language L with Boolean operators and the backward temporal operators,
which include the previous version operator Prevφ which denotes that the property φ
holds in the previous version (with respect to the current version in the version space),
the always-in-past operator Hφ which denotes that the property φ always holds in any
version before the current version, and the since operator φSψ which denoted that the
property φ always holds (till the current version) since the property ψ holds in a version
before the current version. The sometimes-in-the-past operator Pφ is defined in terms of
the always-in-past operator as ¬H¬φ. In the temporal logic, the evaluation of a temporal
formula φ on an ontology o (i.e., a version) in a version space S is defined as an entailment

4

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 5

relation[HS05a, HS05b]:
S, o |= φ

The semantics of the temporal operators is illustrated in Figure 2.1, where arrows
denote the sequence relation of ontologies in the version space, and a formula under an
ontology denotes that the formula holds on the ontology. For example, the first line in the
figure shows that if Prevφ holds on an ontology iff the formula φ hold on its previous
ontology.

The temporal logic can be extended to include the future-oriented temporal opera-
tors like those in standard temporal logics[vB95, Bul70, HS91], action operators like
those in dynamic logics[Har84, PT91, HTK00], and hybrid operators like those in hybrid
logics[BT99, Bla00, FdRS03, AB01].

Figure 2.1: Semantics of Temporal Operators

We have implemented the prototype of MORE by using Prolog. MORE is powered
by the XDIG interface [HV04], an extended DIG description logic interface for Prolog1.
MORE is designed to be a simple API for a general reasoner with multi-version on-
tologies. It supports extended DIG requests from other ontology applications or other
ontology and metadata management systems and supports multiple ontology languages,
including OWL and DIG[BMC03]2. This means that MORE can be used as an interface

1http://wasp.cs.vu.nl/sekt/dig
2http://dl.kr.org/dig/

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 6

to any description logic reasoner as it supports the functionality of the underlying rea-
soner by just passing requests on and provides reasoning functionalities across versions if
needed. Therefore, the implementation of MORE will be independent of those particular
applications or systems.

2.2 Functionalities of MORE

In SEKT Deliverable D3.5.1, we have reported that the prototype of MORE (version 1.0)
have the following functionalities:

• Temporal Reasoning Queries: supports the temporal logic LTLm.

• Ontology Comparison Queries: supports new/obsolete/invariant concept queries
with respect to children/parent/ancestor/descendant concept relations.

• Versioning Queries : supports version retrieval, relative version numbering, and
absolute version numbering.

• Ontology Languages: supports the DIG format as well as the OWL language.

In this document, we would like to report the new functionalities of the prototype of
MORE (version 1.5). It has the following new features:

• Ontology Comparison Queries: supports new/obsolete/invariant role queries with
respect to the DIG role relations, like rchildren/rparent/rancestor/rdescendant, and
new/obsolete/invariant instance queries.

• Ontology Languages: supports the RDF/RDFS data format, which are handled by
SWI-Prolog’s Semantic Web Library[Wie05b, Wie05a, WSW03].

2.3 Ontology Comparison

The new functionalities of MORE support the ontology comparison on the role relations
and the instance relations. In Chapter 4 we are going to show that the comparison on
concept/role/individual relations are very useful to exmaine ontology changes and their
effect of multi-versioning. In the following we provide the details of the semantics of the
comparison operators and its interface language in the prototype of MORE.

Many Description Logic Reasoners support so-called retrieval queries which return a
set of concept names which satisfy a certain condition. For example, a children concept c′

of a concept c, written children(c, c′), is defined as one which is subsumed by the concept
c, and there exists no other named concepts between them.

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 7

Thus, the set of new/obsolete/invariant children concepts of a concept on an ontology
o in the version space S is defined as follows:

newchildren(S, o, c) =df {c′|S, o |= children(c, c′) ∧ ¬Prev children(c, c′)}.

obsoletechildren(S, o, c) =df {c′|S, o |= ¬children(c, c′) ∧Prev children(c, c′)}.
invariantchildren(S, o, c) =df {c′|S, o |= children(c, c′) ∧Prev children(c, c′)}.

The same definitions can be extended into the cases like parent concepts, ancestor
concepts, descendant concepts. Similarly we extend those definitions on the role relations
and instances relations between a concept and an individual as follows:

newrchildren(S, o, r) =df {r′|S, o |= rchildren(r, r′) ∧ ¬Prev rchildren(r, r′)}.

obsoleterchildren(S, o, r) =df {r′|S, o |= ¬rchildren(r, r′) ∧Prev rchildren(r, r′)}.
invariantrchildren(S, o, r) =df {r′|S, o |= rchildren(r, r′) ∧Prev rchildredn(r, r′)}.

where r and r′ are roles, and rchidren is the role children relation as defined in the DIG
interface.

newinstances(S, o, c) =df {i|S, o |= instances(c, i) ∧ ¬Prev instances(c, i)}.

obsoleteinstances(S, o, c) =df {i|S, o |= ¬instances(c, i) ∧Prev instances(c, i)}.
invariantinstances(S, o, c) =df {i|S, o |= instances(c, i) ∧Prev instances(c, i)}.

where c is a concept, and i is an individual.

We define the new/obsolete/invariant children concept relations of an ontology as a
set of concept pairs as follows:

newchildren(S, o) =df {〈c, c′〉|S, o |= children(c, c′) ∧ ¬Prev children(c, c′)}.

obsoletechildren(S, o) =df {〈c, c′〉|S, o |= ¬children(c, c′) ∧Prev children(c, c′)}.
invariantchildren(S, o) =df {〈c, c′〉|S, o |= children(c, c′) ∧Prev children(c, c′)}.

Similar definitions can be extended into new/obsolete/invariant role relations with re-
spect to rchildren/rparents/rancestors/rddescendants relations and new/obsolete/invariant
instance relations between a concept and an individual, like these:

newrchildren(S, o) =df {〈r, r′〉|S, o |= rchildren(r, r′) ∧ ¬Prev rchildren(r, r′)}.

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 8

obsoleterchildren(S, o) =df {〈r, r′〉|S, o |= ¬rchildren(r, r′) ∧Prev rchildren(r, r′)}.
invariantrchildren(S, o) =df {〈r, r′〉|S, o |= rchildren(r, r′) ∧Prev rchildredn(r, r′)}.
where r and r′ are roles, and rchidren is the role children relation as defined in the DIG
interface.

newinstances(S, o) =df {〈c, i〉|S, o |= instances(c, i) ∧ ¬Prev instances(c, i)}.

obsoleteinstances(S, o) =df {〈c, i〉|S, o |= ¬instances(c, i) ∧Prev instances(c, i)}.
invariantinstances(S, o) =df {〈c, i〉|S, o |= instances(c, i) ∧Prev instances(c, i)}.

Those query supports are sufficient to evaluate the consequences of the ontology
changes and the differences among multi-version ontologies. We will discuss them in
Chapter 4.

In the following, we will introduce the interface language for those comparison
queries in MORE. Queries on ontology comparison like those on new/obsolete/invariant
concept/role relations are expressed as the corresponding XML-encoded statements. Here
is an example of queries on what are new children role relations with respect to the role
’hasPet’ on the ontology ’MadCow2’, compared with the ontology ’MadCow1’:

<?xml version="1.0" encoding= "ISO-8859-1" ?>
<askm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">
<querym id="new child roles of the role hasPet on MadCow2 compared MadCow1"

versionSpace="MadCow" ontology="MadCow2">
<newOnRole role="hasPet" type="rchildren"
comparedOntology="MadCow1"/>

</querym>
</askm>

If the query does not contain a specific ontology to make comparisons with, the on-
tology will be compared to with the previous one (in the linear sequence of the version
space).

<querym id="new child roles of the role hasPet on MadCow2 on versionSpace"
versionSpace="MadCow" ontology="MadCow2">

<newOnConcept role="bird" type="rchildren"/>
</querym>

The compared roles can be specified as a list in the query as shown below:

<querym id="new child roles for a role list on MasCow2"
versionSpace="MadCow" ontology="MadCow2">

<newOnRole type="rchildren">
<ratom name="hasPet"/>
<ratom name="hasColor"/>

</newOnRole>
</querym>

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 9

If there is no particular role stated, that means the query should be carried on all roles
in the ontology:

<querym id="new child roles on MadCow2"
versionSpace="MadCow" ontology="MadCow2">

<newOnRole type="rchildren"/>
</querym>

If there is no stated type in the query, that means the query should be carried on all
role relations, namely, on rchildren/rparents/rancestors/rdescendants role relations.

<querym id="new child roles on MadCow2"
versionSpace="MadCow" ontology="MadCow2">

<newOnRole/>
</querym>

Obsolete/Invariant role relations can be stated in queries similarly:

<querym id="obsolete child roles on MadCow2"
versionSpace="MadCow" ontology="MadCow2">

<obsoleteOnRole/>
</querym>
<querym id="invariant child roles on MadCow2"

versionSpace="MadCow" ontology="MadCow2">
<invariantOnRole/>
</querym>

The interface language for role relations and individual relations are summaried in
Figure 2.2 and Figure 2.3 respectively. The interface language for concept relation is
summarized in Figure 2.4, which is also available in SEKT Deliverable D3.5.1.

2.4 RDF/RDFS Data Support

In the MORE interface, the TELL language is designed to be a natural extension to the
TELL requests in the DIG interface for multi-version ontology reasoning. However, note
that the extension to the DIG interface would not hinder its independence of any particular
reasoning language. In MORE, a TELL request contains a tellm (i.e., the tell request in
MORE) element in its body. MORE supports various ontology data formats, like DIG,
OWL and RDF/RDFS. The ontology data in DIG and OWL are converted into its DIG
data format as the XDIG’s internal data format. Reasoning on those data is supported
by an external DIG reasoner, like RACER[HM01], FACT++[Hor99]. In order to achieve
more efficient way to manage RDF/RDFS data, the new prototype of MORE (version
1.5) uses SWI-Prolog’s Semantic Web Library to manage and reason on RDF/RDFS data.
Thus, if ontology data are specified as a RDF/RDFS data format in the TELL language,
they need no an external DL reasoner for its reasoning Support.

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 10

New role <querym id=ID versionSpace=S ontology=o> newType(S, o, r)
<newOnRole role=r type=Type/>

</querym>
Obsolete <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, r)
role <obsoleteOnRole role=r type=Type/>

</querym>
Invariant <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, r)
role <invariantnRole role=r type=Type/>

</querym>
New role <querym id=ID versionSpace=S ontology=o> newType(S, o)
on all <newOnRole type=Type/>
roles </querym>
Obsolete role <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o)
on all <obsoleteOnRole type=Type/>
roles </querym>
Invariant <querym id=ID versionSpace=S ontology=o> invariantType(S, o)
role on <invariantOnRole type=Type/>
all roles </querym>
New role <querym id=ID versionSpace=S ontology=o> newtype(S, o)
without <invariantOnRole/> for all type
a type </querym>
Obsolete <querym id=ID versionSpace=S ontology=o> obsoletetype(S, o)
role without <obsoleteOnRole/> for all type
a type </querym>
Invariant <querym id=ID versionSpace=S ontology=o> invarianttype(S, o)
role without <invariantOnRole/> for all type
a type </querym>
New role <querym id=ID versionSpace=S ontology=o> New type role
compared with <newOnRole role=c type=Type of r in o, compared
arbitrary comparedOntology=o′/> with o′

ontology </querym>
New role <querym id=ID versionSpace=S ontology=o> newType(S, o, r)
relation for <newOnRole type=Type > for all r ∈
a role list <ratom name = r1> {r1, · · · , rn}

· · ·
<catom name = rn/>
< /newOnRole>
</querym>

where type =rchildren/rparents/rancestors/rdescendants

Figure 2.2: Query patterns on role comparison

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 11

New individual <querym id=ID versionSpace=S ontology=o> newinstances(S, o, c)
<newOnIndividual concept=c/>

</querym>
Obsolete <querym id=ID versionSpace=S ontology=o> obsoleteinstances(S, o, c)
individual <obsoleteOnIndividual concept=c/>

</querym>
Invariant <querym id=ID versionSpace=S ontology=o> obsoleteinstances(S, o, c)
individual <invariantOnIndividual concept=c/>

</querym>
New individual <querym id=ID versionSpace=S ontology=o> newinstances(S, o)
on all <newOnIndividual/>
concepts </querym>
Obsolete individual <querym id=ID versionSpace=S ontology=o> obsoleteinstances(S, o)
on all <obsoleteOnIndividual/>
concepts </querym>
Invariant <querym id=ID versionSpace=S ontology=o> invariantinstances(S, o)
individual on <invariantOnIndividual/>
all concepts </querym>
New individual <querym id=ID versionSpace=S ontology=o> new instances
compared with <newOnIndividual concept=c of c in o, compared
arbitrary comparedOntology=o′/> with o′

ontology </querym>
New individual <querym id=ID versionSpace=S ontology=o> newinstances(S, o, c)
relation for <newOnIndividual> for all c ∈
a concept list <catom name = c1> {c1, · · · , cn}

· · ·
<catom name = cn/>
< /newOnIndividual>

</querym>

Figure 2.3: Query patterns on individual comparison

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 12

New concept <querym id=ID versionSpace=S ontology=o> newType(S, o, c)
<newOnConcept concept=c type=Type/>

</querym>
Obsolete <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, c)
concept <obsoleteOnConcept concept=c type=Type/>

</querym>
Invariant <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o, c)
concept <invariantOnConcept concept=c type=Type/>

</querym>
New concept <querym id=ID versionSpace=S ontology=o> newType(S, o)
on all <newOnConcept type=Type/>
concepts </querym>
Obsolete concept <querym id=ID versionSpace=S ontology=o> obsoleteType(S, o)
on all <obsoleteOnConcept type=Type/>
concepts </querym>
Invariant <querym id=ID versionSpace=S ontology=o> invariantType(S, o)
concept on <invariantOnConcept type=Type/>
all concepts </querym>
New concept <querym id=ID versionSpace=S ontology=o> newtype(S, o)
without <invariantOnConcept/> for all type
a type </querym>
Obsolete <querym id=ID versionSpace=S ontology=o> obsoletetype(S, o)
concept without <obsoleteOnConcept/> for all type
a type </querym>
Invariant <querym id=ID versionSpace=S ontology=o> invarianttype(S, o)
concept without <invariantOnConcept/> for all type
a type </querym>
New concept <querym id=ID versionSpace=S ontology=o> New type concept
compared with <newOnConcept concept=c type=Type of c in o, compared
arbitrary comparedOntology=o′/> with o′

ontology </querym>
New concept <querym id=ID versionSpace=S ontology=o> newType(S, o, c)
relation for <newOnConcept type=Type > for all c ∈
a concept list <catom name = c1> {c1, · · · , cn}

· · ·
<catom name = cn/>
< /newOnConcept>

</querym>

where type =children/parents/ancestors/descendants

Figure 2.4: Query patterns on concept comparison

CHAPTER 2. MORE: A MULTI-VERSION ONTOLOGY REASONING SYSTEM 13

The Semantic Web Library of SWI-Prolog have been proved to be very efficient for
reading, querying, and storing semantic web documents. The library can handle upto
about 2 million RDF triples on an ordinary computer (256MB memory, Pentium 1.5Ghz).

Ontology data which will be handled by SWI-Prolog’s Semantic Web Library have to
be told by a tellm statement which refers to their URLs like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<tellm xmlns="http://wasp.cs.vu.nl/sekt/more/lang"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://wasp.cs.vu.nl/sekt/more/more.xsd">
<ontology name="ontoRDF" language="rdf"

url="file:ontology/legalcase/ontoRDF.rdf"/>
<ontology name="ontoRDF" language="rdfs"

url="file:ontology/legalcase/ontoRDF.rdfs"/>
<ontology name="ontoRDF2dig" language="dig"

url="http://wasp.cs.vu.nl/ontology/legalcase/ontoRDF2.dig2.xml"/>
<ontology name="ontoRDF3" language="rdf"

url="file:ontology/legalcase/ontoRDF3.rdf"/>
<ontology name="ontoRDF3" language="rdfs"

url="file:ontology/legalcase/ontoRDF3.rdfs"/>
<ontology name="oplk" language="rdf"

url="file:ontology/legalcase/oplk.rdf"/>
<ontology name="oplk" language="rdfs"

url="file:ontology/legalcase/oplk.rdfs"/>
<ontology name="oplkowl" language="owl"

url="file:ontology/legalcase/oplk.owl"/>
<ontology name="opjk" language="rdf"

url="file:ontology/legalcase/opjk.rdf"/>
<ontology name="opjk" language="rdfs"

url="file:ontology/legalcase/opjk.rdfs"/>
<ontology name="opjkowl" language="owl"

url="file:ontology/legalcase/opjk.owl"/>

<versionSpace name="legalcase1">
<pair ontology1="ontoRDF" ontology2="ontoRDF2dig"/>
<pair ontology1="ontoRDF2dig" ontology2="ontoRDF3"/>
<pair ontology1="ontoRDF3" ontology2="oplk"/>
<pair ontology1="oplk" ontology2="oplkowl"/>
<pair ontology1="oplkowl" ontology2="oplk"/>
<pair ontology1="opjk" ontology2="opjkowl"/>
</versionSpace>
</tellm>

In this example, some of ontologies, like ontoRDF, ontoRDF3, are specified as ones
in RDF/RDFS data format. Their management and reasoning are supported by SWI-
Prolog’s Semantic Web Machinery. That is done by MORE automatically. Users need
not to care about how SWI-Prolog’s Semantic Web Library is used. Some of ontologies,
like ontoRDF2dig and oplkowl, are claimed to be ones in DIG/OWL format. They rely
on an external DL reasoner which supports the DIG interface for their reasoning support.

Chapter 3

Legal Ontologies and Versioning

The aim of SEKT is to develop and exploit semantically-based knowledge technologies
in order to support document management, content management, and knowledge man-
agement in knowledge intensive workplaces. Specifically, SEKT aims at designing ap-
propriate utilities to users in three main areas: digital libraries, the engineering industry,
and the legal domain, providing them with quick access to the right pieces of information
at the right time. In this chapter, we report on the ontologies of the legal case study of
the SEKT project and their versioning. We will first briefly introduce the legal case study,
before describing the relevant version space for the OPJK ontology in more detail.

3.1 The SEKT legal case study

More details regarding the legal case study can be found in SEKT deliverable
D10.2.1[CPC+05b].

In the legal case study, the accomplished tasks so far provide both the quantitative
and qualitative data necessary to assess both the context of users, (newly recruited Span-
ish judges), and their specific needs with regard to the technology under development.
In particular, these data give an insight on institutional, organizational, and individual
constraints that could either facilitate or block the introduction of SEKT technologies in
judicial units. From this set of data, the Ontology of Professional Judicial Knowledge is
built.

Until now, the legal ontologies have been built up with several purposes: informa-
tion retrieval, statute retrieval, normative linking, knowledge management or legal rea-
soning. Although the legal domain remains very sensitive to the features of regional or
national statutes and regulations, some of the Legal-Core Ontologies (LCO) are intended
to share a common kernel of legal notions. However, LCO remain in the domain of a
general knowledge shared by legal theorists, national or international jurists and com-
parative lawyers. This use case study fed on the idea of the existence of a Professional
Legal Knowledge (PLK) which is: (i) shared among members of the judicial professional

14

CHAPTER 3. LEGAL ONTOLOGIES AND VERSIONING 15

group (e.g. judges, attorneys, prosecutors...); (ii) learned and conveyed formally or most
often informally in specific settings (e.g. the Judicial School, professional associations
-the Bar, the Judiciary...-); (iii) expressible through a mixture of natural and technical lan-
guage (legalese, legal slang); (iv) non-equally distributed among the professional group;
(v) non-homogeneous (elaborated on individual bases); (vi) universally comprehensible
by the members of the profession (there is a sort of implicit identification principle).

The data (nearly 800 competency questions) gathered from judicial inter-
views by the legal case study, allows the construction of an ontology based on
professional judicial knowledge. Knowledge derived from the daily practice
at courts. The Ontology of Professional Judicial Knowledge (OPJK) devel-
oped by the legal case study team has been learnt from scratch out of nearly
400 competency questions and has, currently, nearly 90 concepts, 100 relations
and 70 individuals. The following top domain concepts have been identified:
acto procesal, organo judicial, calificacion jurdica, documento procesal, fase procesal,
jurisdiccion, proceso judicial, profesion jurdica, rol procesal, rol familiar and
sancion. In this deliverable, we will use the ontolgy OPJK as the test data to evaluate the
system of ontology versioning and management.

The Legal Case Study Prototype has been designed taking into account two main con-
siderations: (i) an accurate searching system, with advanced technology, that goes beyond
traditional searching algorithms, capable of reliable search over a vast FAQ repository; (ii)
a design that supports a fast, usable, modular, extensible, scalable, improving implemen-
tation. The first point might be achieved by using some techniques like ontologies to
model legal case domains and NLP techniques. The second point is achieved by leverag-
ing on some software technology patterns, like a multistage searching cycle for successive
approach to FAQ pair target or pluggable searching stage engines. The final design is flex-
ible, modular, scalable, customizable and suitable for the prototype.

3.2 The OPJK versioning space

The OPJK ontology lies at the core of the legal case study within SEKT, as it links natural
language questions (formulated by newly recruited Spanish judges) with a repository of
frequently asked questions (FAQs) with their corresponding answers provided by more
experiences judges. To this aim, OPJK contains definitions for the most relevant judicial
terms in the professional knowledge of law professionals with respect to this set of FAQs.
As this is highly specialised knowledge producing a new version of the OPJK is a difficult
task. In practise, a team of legal experts meets in regular intervals to decide on the relevant
changes to the OPJK where the decision is taken w.r.t. the questions in the FAQs.

The OPJK versioning space has been built to reflect on this structured way of dealing
with the frequently asked questions, and in principle, it is a linear space with usually
one new version per FAQ. Not only is this a direct mirror of the creation process, it also
constitutes an opportunity to analyse the epistemic process in a systematic way.

CHAPTER 3. LEGAL ONTOLOGIES AND VERSIONING 16

Technically, we collected 27 versions of the OPJK up to now, and many more will be
expected in the near future.

3.3 Analysing the OPJK versioning space

We can now analyse the OPJK versioning space with two different motivations: first,
as a well-constructed (and documented) versioning space of a complex ontology, and
secondly, as a formalisation of an epistemological process, in which knowledge elicitation
is made explicit in ontological changes.

In this document we will only address the first issue, and leave the latter to the fol-
lowing SEKT deliverable 3.5.3. More concretely, we will analyse the OPJK versioning
space from two perspective. First, we will study measures on the temporal dimension
of the version space, i.e. search whether we can detect peculiarities in the process at a
whole. Is the process a stable, monotonic one, where information is added to new ver-
sions? Or is there constantly information retracted, suggesting a more ad hoc process? In
the following Chapter we will try to answer these kinds of questions in a systematic way.

Chapter 4

Tests, Analysis, and Evaluation

4.1 Ontology Versioning and Effect Space

When an ontology is changed, knowledge engineers may want to know the ramification
of the change. They may want to know whether or not the change may lead to some unin-
tended effect on the ontology. Usually those effect have to be judged from their semantic
implications, which cannot be judged by a syntactic checking on the ontology. More-
over, knowledge engineers may want to have some qualitative or quantitative evaluation
on the changes they have done. For example, they may want to know whether or not
those changes are big or small, in the sense that they lead to big or small semantic dif-
ference from its previous version. They may want to know whether or not those changes
are monotonic or non-monotonic in the sense that they would not obsolete any implied
semantic relation.

In order to measure ontology changes and their effect, we have to check the
ramification of an ontology change on all possible semantic relations on the con-
cept/role/individual relations of an ontology. We call the set of all possible seman-
tic relations the Effect Space of a version space. By the notion of the effect space,
we will develop a framework to examine and evaluate ontology versioning and their
changes. We want to propose a formal approach to measure those kinds of changes
and their effect, so that we can evaluate ontology changes with respect to their qual-
itative/quantitative properties. All of the ontology changes can be examined under an
effect space which covers all of the possible changes and their ramification on the se-
mantic relation with respect to concepts/roles/individuals. In this document, we con-
sider only effect spaces which are characterized by the new/obsolete/invariant rela-
tion on concepts/roles/individuals on a version space. Namely, an effect space con-
sists of those relations are new/obsolete/invariant concept relations with respect to chil-
dren/parents/ancestors/descendants relations, new/obsolete/invariant role relations with
respect to rchildren/rparents/ancestors/descendant relations, and new/obsolete/invariant
instance relation between concepts and individuals.

Suppose that an ontology o in a version space S consists of about nc concepts, nr roles,

17

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 18

and ni individuals. The number of possible concept relations on new/obsolete/invariant
with respect to children/parents/ancestors/descendants aspects is NC(S, o) = nc × nc ×
3 × 4. The number of possible instance relations between a concept and an individual is
NI(S, o) = nc×ni×3. The number of possible role relations isNR(S, o) = nr×nr×3×4.
Therefore, the effect space has N(S, o) = NC(S, o) + NR(S, o) + NI(S, o) possible
semantic relations at each version. Suppose that version space S consists of nv version
ontologies and each ontology has almost the same numbers of concept/role/individual,
then the number of possible semantic relations in a version space is N(S, o)× nv.

In the following we will measure the ontology change and their effects from the fol-
lowing different levels:

• Version level: We examine ontology changes on a single version, so that their ef-
fects can be displayed in a timeline of a version space, from which we provide a
dynamic view on ontology changes.

• Concept/Role level: We examine ontology changes on a single concept or role to
see its dynamic properties, from which we can obtain the picture of concepts/roles
for their stability, difference, and the monotonicity.

• Semantic Relation Level: We examine single semantic relation to see its temporal
aspect in a version space.

4.2 Ontology Change Measure on the Version Level

In this section, we measure ontology changes and their effect on the version level, so that
the difference on changes can be presented as a timeline on a version space. Moreover,
we measure ontology changes with respect to the following criteria respectively:

• stability: how stable among the semantic relations when an ontology is subjected
to a change which leads to a new version.

• difference: what are differences, more exactly what are new, among semantic rela-
tions when an ontology has been changed.

• monotonicity: whether or not the existence of some semantic relations which hold
in the previous version do not hold in the current version?

The relation among those three properties are illustrated in Figure 4.1.

4.2.1 Stability Measure

We measure the stability of an ontology as the sets of its invariant concept/role/individual
relations which are compared with its previous version. Thus, we have the following
formal definitions:

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 19

Figure 4.1: The relation among the stabilty, the difference, and the monotonocity.

Definition 4.2.1 (Concept Stability)

InvariantonConcept(S, o) = {〈type, c, c′〉|〈c, c′〉 ∈ invarianttype(S, o) and
type ∈ {children, parents, ancestors, descendants}}

Definition 4.2.2 (Role Stability)

InvariantonRole(S, o) = {〈type, r, r′〉|〈r, r′〉 ∈ invarianttype(S, o) and
type ∈ {rchildren, rparents, rancestors, rdescendants}}

Definition 4.2.3 (Individual Stability)

InvariantonIndividual(S, o) = {〈type, c, i〉|〈c, i〉 ∈ invariantinstances(S, o)}

Definition 4.2.4 (Ontology Stability)

Invariant(S, o) = InvariantonConcept(S, o)∪
InvariantonRole(S, o)∪
InvariantonIndividual(S, o).

Figure 4.2 shows the timeline differences of the cardinarity of the stability sets in the
version space OPJK1. A way to normalize the stability measure so that the normalized

1So far the OPJK ontology has flat role relations. Therefore, we do not count any role relation of the
OPJK ontology in this document.

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 20

Figure 4.2: Timeline of the stability of the OPJK ontologies (opjk1.1-opjk1.27)

Figure 4.3: Timeline of the normalized stability of the OPJK ontologies (opjk1.1-
opjk1.27)

values fall into the set [0, 1] is to divide the cardinarity by the maximal cardinarity in the
set, as defined in Definition 4.2.5. The normalized stability is shown in Figure 4.3. This
kind of normalization gives the impression that the ontology is getting more and more
stable with time goes.

Definition 4.2.5 (Normalized Stabilities)

NIoC(S, o) = |IoC(S, o)|/max({|IoC(S, o′)| : o′ ∈ ontology(S)})
NIoR(S, o) = |IoR(S, o)|/max({|IoR(S, o′)| : o′ ∈ ontology(S)})
NIoI(S, o) = |IoI(S, o)|/max({|IoI(S, o′)| : o′ ∈ ontology(S)})
NI(S, o) = |Invariant(S, o)|/max({|Invariant(S, o′)| : o′ ∈ ontology(S)})

where NIoC = Normalized InvaraintonConcept, NIoR = Normalized Invarianton-
Role, NIoI = Normalized InvariantonIndividual, NI = Normalized Invariant, IoC = In-
variantonConcept, IoR=InvariantonRole, and IoI=InvariantonIndividual.

A more reasonable approach to normalize the stability is to divide them by the cor-
responding relation numbers, i.e. NC , NR, NI , and N , in a single version o of the effect

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 21

Figure 4.4: Timeline of the normalized concept stability of the OPJK ontologies w.r.t. the
effect space (opjk1.1-opjk1.27)

Figure 4.5: Timeline of the normalized individual stability of the OPJK ontologies w.r.t.
the effect space (opjk1.1-opjk1.27)

space in a version space S, which are defined in Section 4.1. Namely, we normalize the
stability with respect to its effect space.

Definition 4.2.6 (Normalized Stability with respect to Effect Space)

NIoCNC(S, o) = |IoC(S, o)|/NC(S, o)
NIoRNR(S, o) = |IoR(S, o)|/NR(S, o)
NIoINI(S, o) = |IoI(S, o)|/NI(S, o)
NIN(S, o) = |Invariant(S, o)|/N(S, o)

where NIoCNC = Normalized InvaraintonConcept w.r.t.NC , NIoRNR = Normalized
InvariantonRole w.r.t.NR, NIoINI = Normalized InvariantonIndividual w.r.t.NI , NIN =
Normalized Invariant w.r.t.N , IoC = InvariantonConcept, IoR=InvariantonRole, and
IoI=InvariantonIndividual.

The timelines of the normalized statbility with respect to concept/individual/general
relation in the effect spaces are shown in Figure 4.4, Figure 4.5, and Figure 4.6 respec-
tively. From the timeline graphs, we can see that there exist some difference of the stabil-
ity with time goes. Actually the last few versions (opjk1.25 and opjk1.27) are less stable

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 22

Figure 4.6: Timeline of the normalized stability of the OPJK ontologies w.r.t. the effect
space (opjk1.1-opjk1.27)

than their previous versions. In the version opjk1.25 and opjk1.27, new subclasses are
created and some classes have been changed their positions in the concept hierarchy.

4.2.2 Difference Measure

The new/obsolete concept/role/individual relations show the difference of an ontology
from its previous version. They can be used to measure how big a change has been
done on the ontology. We are particularly interested in the difference measure by new
concept/role/ individual relations. Similar with those definition on invariance, we define
the difference measure on the new concept/role/individual relations. Thus, the new on an
ontology and its normalized one are defined as follows:

Definition 4.2.7 (New on Ontology)

New(S, o) = NewonConcept(S, o)∪
NewonRole(S, o)∪
NewonIndividual(S, o).

Definition 4.2.8 (Normalized New)

NNoC(S, o) = |NoC(S, o)|/max({|NoC(S, o′)| : o′ ∈ ontology(S)})
NNoR(S, o) = |NoR(S, o)|/max({|NoR(S, o′)| : o′ ∈ ontology(S)})
NNoI(S, o) = |NoI(S, o)|/max({|NoI(S, o′)| : o′ ∈ ontology(S)})
NN(S, o) = |New(S, o)|/max({|New(S, o′)| : o′ ∈ ontology(S)})

where NNoC = Normalized NewonConcept, NNoR = Normalized NewonRole, NNoI
= Normalized NewonIndividual, NN = Normalized New relation, NoC =NewonConcept,
NoR=NewonRole, and NoI=NewonIndividual.

Figure 4.7 is the timeline of the new relation of the OPJK ontology which shows
the amount of different concept/individual relations of all ontologies in the version space

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 23

Figure 4.7: Timeline of the new relation of the OPJK ontologies

Figure 4.8: Timeline of the normalized new relation of the OPJK ontologies

OPJK. The normalized new relation is shown in Figure 4.8. From the timeline figures we
know that most of the changes on the OPJK ontology are small. The change on opjk1.5,
which is shown on new relation on opjk1.6, is significantly big. The biggest change occurs
on opjk1.6, the second biggest change occurs on opjk1.27, and the third one occurs on
opjk1.25.

Definition 4.2.9 (Normalized New with respect to Effect Space)

NNoCNC(S, o) = |NoC(S, o)|/NC(S, o)
NNoRNR(S, o) = |NoR(S, o)|/NR(S, o)
NNoINI(S, o) = |NoI(S, o)|/NI(S, o)
NNN(S, o) = |New(S, o)|N(S, o)

where NNoCNC = Normalized NewonConcept w.r.t.NC , NNoRNR = Normal-
ized NewonRole w.r.t.NR, NNoINI = Normalized NewonIndividual w.r.t.NI , NNN
= Normalized New relation w.r.t.N , NoC =NewonConcept, NoR=NewonRole, and
NoI=NewonIndividual.

Similarly we introduce the normalized difference measure with respect to the effect
space. Figure 4.9 is the timeline of the normalized new relation of the OPJK ontology
with respect to the effect space. The result shows a similar difference measure as that of
normalization with respect to the maximal number. Namely, the biggest change occurs
on opjk1.6, the second biggest change occurs on opjk1.27, and the third biggest change

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 24

Figure 4.9: Timeline of the normalized new of the OPJK ontologies w.r.t. the effect space
(opjk1.1-opjk1.27)

Figure 4.10: Timeline of the obsolete relation of the OPJK ontologies

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 25

occurs on opjk1.25. The two different normalization approaches tell a similar result under
this OPJK versioning scenario.

4.2.3 Monotonicity Measure

The obsolete concept/role/individual relations show that some semantic relations on an
ontology which hold in the previous version do not hold in the current version any
more. Therefore, it can be considered as a kind of measure for the monotonicity/non-
monotonicity of an ontology change. By the monotonicity we mean that the change does
not obsolete any previously held property, otherwise it is called a non-monotonic change.

Therefore, we have the following formal definitions:

Definition 4.2.10 (Ontology Monotonicity)

Obsolete(S, o) = ObsoleteonConcept(S, o)∪
ObsoleteonRole(S, o)∪
ObsoleteonIndividual(S, o).

Similarly the normalized obsolete is measured by

Definition 4.2.11 (Normalized obsolete)

NOoC(S, o) = |OoC(S, o)|/max({|OoC(S, o′)| : o′ ∈ ontology(S)})
NOoR(S, o) = |OoR(S, o)|/max({|OoC(S, o′)| : o′ ∈ ontology(S)})
NOoI(S, o) = |OoI(S, o)|/max({|OoI(S, o′)| : o′ ∈ ontology(S)})
NO(S, o) = |Obsolete(S, o)|/max({|Obsolete(S, o′)| : o′ ∈ ontology(S)})

where NOoC = Normalized ObsoleteonConcept, NOoR = Normalized ObsoleteonRole,
NOoI = Normalized ObsoleteonIndividual, NO = Normalized Obsolete relation, OoC
=ObsoleteonConcept, OoR=ObsoleteonRole, and OoI=ObsoleteonIndividual.

Figure 4.7 is the timeline of the new relation of the OPJK ontology which shows
the amount of different concept/individual relations of all ontologies in the version space
OPJK. A finding from this measure is that adding new individuals occurs more often than
adding new concepts. This suggests that most additions were at the instance level, i.e., at
A-box, not at T-box. However, once a new concept is added, it usually leads to a bigger
change than that of a new individual. The normalized new relation is shown in Figure 4.8.
From the timeline figures we know that most of the changes on the OPJK ontology are
small. The change on opjk1.5, which is shown on new relation on opjk1.6, is significantly
big. Figure 4.10 is the timeline of the obsolete relation of the OPJK ontology, which
shows that only opjk1.6, opjk1.23, and opjk1.25 have some obsolete concept relations and
obsolete individual relations, and opjk1.16 has only some obsolete individual relations.

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 26

Figure 4.11: Timeline of the normalized obsolete of the OPJK ontologies w.r.t. the effect
space (opjk1.1-opjk1.27)

Definition 4.2.12 (Normalized obsolete with respect to Effect Space)

NOoCNC(S, o) = |OoC(S, o)|/NC(S, o)
NOoRNR(S, o) = |OoR(S, o)|/NR(S, o)
NOoINI(S, o) = |OoI(S, o)|/NI(S, o)
NON(S, o) = |Obsolete(S, o)|/N(S, o)

where NOoCNC = Normalized ObsoleteonConcept w.r.t. NC , NOoRNR = Normalized
ObsoleteonRole w.r.t. NR, NOoINI = Normalized ObsoleteonIndividual w.r.t.NI , NON =
Normalized Obsolete relation w.r.t.N , OoC =ObsoleteonConcept, OoR=ObsoleteonRole,
and OoI=ObsoleteonIndividual.

Figure 4.11 is the timelines of the normalized obsolete relation of the OPJK ontology
with respect to effect space. Those timelines show that opjk1.25 has the biggest nonmono-
tonicity effect and opjk1.23 has the second biggest nonmonotonicity effect with respect
to the individual relation.

4.3 Ontology Change Measure on the Concept Level

In this section we measure ontology changes and their effects on individual concepts, so
that we can obtain the message which concept/role in the ontology is more stable than
others, by which we can find the core of an ontology.

4.3.1 Stability Measure

We measure the stability of a concept in a version space as the amount of its invariant
relations which are compared with its previous version. Thus, we have the following
formal definitions:

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 27

Figure 4.12: The concept stability of the OPJK ontologies (opjk1.1-opjk1.15)

Definition 4.3.1 (Concept Stability of a Concept)

ConceptInvariant(S, c) = {〈type, c, c′〉|〈c, c′〉 ∈ invarianttype(S, o) and
type ∈ {children, parents, ancestors, descendants} and
o ∈ ontology(S)}

Definition 4.3.2 (Role Stability of a Role)

RoleInvariant(S, r) = {〈type, r, r′〉|〈r, r′〉 ∈ invarianttype(S, o) and
type ∈ {rchildren, rparents, rancestors, rdescendants} and
o ∈ ontology(S)}

Definition 4.3.3 (Individual Stability of a Concept)

IndividualInvariant(S, c) = {〈type, c, i〉|〈c, i〉 ∈ invariantinstances(S, o) and
o ∈ ontology(S)}

Definition 4.3.4 (Concept Stability)

ConceptStability(S, c) = ConceptInvariant(S, c)∪
IndividualInvariant(S, c).

Figure 4.12 shows the stability of the concepts in the OPJK ontology. Similarly we
normalize the concept stability measure by dividing the invariance cardinarity by the max-
imal invariance cardinarity. The normalized concept stability is shown in Figure 4.13.
The individual stability is shown in Figure 4.14. Figure 4.15 shows top 30 most stable
concepts from opjk1.1 till opjk1.15 in the OPJK ontology.

4.3.2 Difference Measure

Similar with those in the difference measure in the ontology level, we measure the dif-
ference on the concept level in terms of the new concept relations and new instances
relations.

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 28

Figure 4.13: The normalized concept stability of the OPJK ontologies (opjk1.1-opjk1.15)

Figure 4.14: The individual stability of the OPJK ontologies (opjk1.1-opjk1.15)

Figure 4.15: Top 30 most stable concepts in the OPJK ontologies

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 29

Figure 4.16: The concept difference of the OPJK ontologies (opjk1.1-opjk1.15)

Definition 4.3.5 (Concept Difference of a Concept)

ConceptNew(S, c) = {〈type, c, c′〉|〈c, c′〉 ∈ newtype(S, o) and
type ∈ {children, parents, ancestors, descendants} and
o ∈ ontology(S)}

Definition 4.3.6 (Individual Difference of a Concept)

IndividualNew(S, c) = {〈type, c, i〉|〈c, i〉 ∈ newinstances(S, o) and
o ∈ ontology(S)}

Definition 4.3.7 (Concept Difference)

ConceptDifference(S, c) = ConceptDifference(S, c)∪
IndividualDifference(S, c).

Figure 4.16 shows the concept difference of concepts in the OPJK ontology. The
normalized concept difference is shown in Figure 4.17. The individual difference is shown
in Figure 4.18. Figure 4.19 shows top 20 mostly effected concepts from opjk1.1 till
opk1.152 in the OPJK ontology.

4.3.3 Monotonicity Measure

Again, we measure the monotonicy in the conncept level by using the obsolete con-
cept/role/individual relations.

2This kind of the analysis data were obtained before version opjk1.16 was created. In this document
we provide only the data about opjk1.1 - opjk1.15. The data about other versions will be available at the
website of MORE: http://wasp.cs.vu.nl/sekt/more.

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 30

Figure 4.17: The normalized concept difference of the OPJK ontologies (opjk1.1-
opjk1.15)

Figure 4.18: The individual difference of the OPJK ontologies (opjk1.1-opjk1.15)

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 31

Figure 4.19: Top 20 mostly effected concepts in the OPJK ontologies (opjk1.1-opjk1.15)

Definition 4.3.8 (Concept Obsolete of a Concept)

ConceptObsolete(S, c) = {〈type, c, c′〉|〈c, c′〉 ∈ obsoletetype(S, o) and
type ∈ {children, parents, ancestors, descendants} and
o ∈ ontology(S)}

Definition 4.3.9 (Individual Obsolete of a Concept)

IndividualObsolete(S, c) = {〈type, c, i〉|〈c, i〉 ∈ obsoleteinstances(S, o) and
o ∈ ontology(S)}

Definition 4.3.10 (Concept Monotonicity)

ConceptMonotonicity(S, c) = ConceptObsolete(S, c)∪
IndividualObsolete(S, c).

As shown in Figure 4.10, the OPJK ontology has some obsolete concept relations only
at opjk1.6, opjk1.23, and opjk1.25. It is less interesting to show them as the figures. The
details of the obsolete relations can be obtained from the website of MORE3.

4.4 Ontology Change Measure in the Semantic Relation
Level

A semantic relation can be examined with respect to its temporal aspects. If a property
on the ontology is changed once, it is never changed back again in any sequel version
as illustrated in Figure 4.20. We consider that kind of change as a stable one, because it
occurs only once in the whole version space. The corresponding temporal query of stable
change on a property can be expressed as

¬φSHφ.

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 32

Figure 4.20: Stable change

The query on the existence of only two changes with respect to a property φ, as shown
in Figure 4.21, can be expressed as

¬φSPrev(φSH¬φ).

Figure 4.21: Only two changes with respect to φ

Define the only-n-times-change operator as follows:

Change(1, φ) =df ¬φSHφ.

Change(n, φ) =df ¬φSPrevChange(n− 1,¬φ),

for n > 1.

We examine the OPJK ontology for its changes with respect to the temporal aspects. It
shows that all concept relations on the OPJK ontology from opjk1.1 till opjk1.27 are sta-
ble. That can be confirmed by examining the obsolete concept relations only in opjk1.6,
opjk1.23, and opjk1.25, because the timeline presentation of the obsolete concept in Fig-
ure 4.10 which shows that obsolete concept relations occur only in those versions. We
will extend our evaluation to more complex temporal queries in our next research.

3http://wasp.cs.vu.nl/sekt/more

CHAPTER 4. TESTS, ANALYSIS, AND EVALUATION 33

4.5 Summary of the Analysis and the Findings

In the following we summarize the main findings and observations of the OPJK ontology
versioning from the analysis and the evaluation, by which we want to obtain a better
understanding on the design of the OPJK. Moreover, we will discuss the implications for
the development process of ontologies.

• In general the ontology is getting more stable with time goes, from Figure 4.2 it is
observable that the level of stability increases with time. During the first versions,
important decisions on concept and sub-concept level are made.

• The results provided above in this deliverable, also show that some recent OPJK
versions are less stable than their previous ones (Figure 4.4). The property indi-
cates that some conceptual restructuring occurs on OPJK. In these last 3 versions,
due to insight provided by the data (competency questions) the modellers modified
modelling decisions made in previous versions; modify subclass relationships and
add children to certain classes. For example, in version 1.25, a new subclass of
FamilyRole is created and instances belonging to another class have been moved
to it. Also a new subclass is added in version 1.27 and existing instances are reas-
signed to it.

• From the results it can also be affirmed that adding new individuals occurs more
often than adding new concepts. This suggests that most additions were at the
instance level, i.e., at A-box, not at T-box. However, when a new concept is added,
it usually leads to a bigger change than that by a new individual.

• Finally, the data also shows that so far most of the changes on OPJK are small. Few
semantic relations are obsolete. That means that the current methodology which is
introduced in the design of the OPJK ontology is reliable.

Regarding the implications for ontology development, ontology modellers may rely
on the ontology stability measurement to be able to analyze the modelling decisions that
involved a great level of instability. In the same way, if the amount of instability inflicted
by adding or modifying subclasses could be assessed, different modelling options could
be sought to promote stability. From the modelling point of view, it is interesting to see
how certain knowledge experts discussions are mirrored in the stability measures of the
ontology.

Measurements on the concept level might also be very useful for modellers. Regarding
OPJK, the list of the most stable concepts in OPJK does not include Acto and Hecho, that,
although they are in the ontology since the initial versions, they do not appear within the
most 30 stable concepts; these two concepts have been part of an ongoing discussion
within the modelling team, as it can be learnt from the concept stability measurement.
Concept stability measurements are not only useful to know which concepts are not stable,
but also to learn that some concepts (such as Objeto in OPJK), have been stable against
all odds.

Chapter 5

Discussion and Conclusions

In this document we presented first evaluation results of the MORE versioning system on
the OPJK versioning space.

The OPJK is an ontology which was developed within the SEKT project’s legal case
study to support the semantic classification of questions of junior legal experts to a set
of Frequently Asked Questions. The OPJK has been developed by legal experts over a
significant time, and a number of successive versions have been recorded in the so-called
versioning space. This space contains valuable information on the knowledge elicitation
process, but is also an interesting test case for the use of semantic versioning techniques
in the creation of ontologies.

The MORE tool was developed in Amsterdam within SEKT, and described in detail in
SEKT deliverable 3.5.1. It offers semantic versioning support for ontology development
based on a combination of change detection and Linear Temporal Logic.

The experiments we conducted were three-fold. First, we studied the properties of
the overall versioning space by checking for stability, novelty and monotonicity of the
process. More concretely, we studied at which time semantic relations between classes
were added, deleted or remained the same. This indicated that there are different types
of changes in the versioning space, the smaller ones with only minor, often cosmetic,
variations, and the more substantial ones, in which many new semantic relations change.
The second study was a more detailed analysis on concept level. Here, we identified the
most stable concepts in the OPJK ontologies, those with the most frequent changes, and
the most commonly effected concepts. Finally, we provided an initial case study on the
stability of change in the versioning space using the power of the temporal logic which
underlies MORE.

Extending our evaluation to more complex temporal queries is one of the next steps in
our research. Although the current research has shown the potential of the mechanism and
the practicability of the tool support, a more detailed analysis of the temporal properties
of the versioning space seems promising, but also needed to evaluate the suitability of our
versioning language for the purpose at hand.

34

CHAPTER 5. DISCUSSION AND CONCLUSIONS 35

Finally, a more philosophical discussion has now become possible, and will be in our
focus in the near future: a detailed analysis of the knowledge elicitation process through
analysis of the version space. Here, in close co-operation with partners from the different
working packages within SEKT, we hope to extend our understanding of the role of par-
ticular legal terms or concepts in the light of the application, and their function within the
semantic structure.

Bibliography

[AB01] C. Areces and P. Blackburn. Bringing them all together. Journal of Logic
and Computation, 11(5):657–669, 2001. Special Issue on Hybrid Logics.
Areces, C. and Blackburn, P. (eds.).

[BCB+04] V.R. Benjamins, J. Contreras, M. Blázquez, L. Rodrigo, P. Casanovas, and
M. Poblet. The sekt use legal case components: ontology and architecture.
In T.B. Gordon, editor, Legal Knowledge and Information Systems, pages
69–77. IOS Press, Amsterdam, 2004.

[Bla00] P. Blackburn. Representation, reasoning, and relational structures: a hybrid
logic manifesto. Logic Journal of the IGPL, 8(3):339–365, 2000.

[BMC03] S. Bechhofer, R. Möller, and P. Crowther. The DIG description logic inter-
face. In International Workshop on Description Logics (DL2003). Rome,
September 2003.

[BT99] P. Blackburn and M. Tzakova. Hybrid languages and temporal logic. Logic
Journal of the IGPL, 7(1):27–54, 1999.

[Bul70] R. Bull. An approach to tense logic. Theoria, 36:282–300, 1970.

[CCLCL05] V.R. Benjamins P. Casanovas, J. Contreras, J. M. López-Cobo, and
L. Lemus. Iuriservice: An intelligent frequently asked questions system to
assist newly appointed judges. In V.R. Benjamins et al, editor, Law and the
Semantic Web, pages 205–522. Springer-Verlag, London, Berlin, 2005.

[CPC+05a] P. Casanovas, M. Poblet, N. Casellas, J. Contreras, R. Benjamins, and
M. Blázquez. Supporting newly-appointed judges: A legal knowledge man-
agement case study. Journal of Knowledge Management, 2005.

[CPC+05b] P. Casanovas, M. Poblet, N. Casellas, J-J. Vallbé, F. Ramos, V.R. Benjamins,
M. Blázquez, J. Contreras, and J. Gorronogoitia. Legal scenario. case study
intelligent integrated decision support for legal professionals. Project Report
Report D10.2.1, SEKT, 2005.

[FdRS03] M. Franceschet, M. de Rijke, and B. H. Schlingloff. Hybrid logics on linear
structures: expressivity and complexity. In Proceedings TIME 2003, pages
166–173. IEEE Computer Society Press, 2003.

36

BIBLIOGRAPHY 37

[Har84] D. Harel. Dynamic logic. In D. Gabbay and F. Guenther, editors, Hand-
book of Philosophical Logic Volume II — Extensions of Classical Logic,
pages 497–604. D. Reidel Publishing Company: Dordrecht, The Nether-
lands, 1984.

[HM01] V. Haarslev and R. Möller. Description of the racer system and its applica-
tions. In Proceedings of the International Workshop on Description Logics
(DL-2001), pages 132–141. Stanford, USA, August 2001.

[Hor99] I. Horrocks. Fact and ifact. In Proceedings of the International Workshop on
Description Logics (DL’99), pages 133–135, 1999.

[HS91] J. Y. Halpern and Y. Shoham. A propositional modal logic of time intervals.
Journal of the ACM, 38(4):935–962, October 1991.

[HS05a] Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies.
Project Report Report D3.5.1, SEKT, 2005.

[HS05b] Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies: a
temporal logic approach. In Proceedings of the 2005 International Semantic
Web Conference, 2005.

[HTK00] D. Harel, J. Tiuryn, and D. Kozen. Dynamic Logic. MIT Press, 2000.

[HV04] Z. Huang and C. Visser. Extended DIG description logic interface support
for PROLOG. Deliverable D3.4.1.2, SEKT, 2004.

[PT91] S. Passy and T. Tinchev. An essay in combinatory dynamic logic. Informa-
tion and Computation, 93(2):263–332, 1991.

[vB95] J. van Benthem. Temporal logic. In Handbook of Logic in Artificial Intelli-
gence and Logic Programming, volume 4, pages 241–350. Oxford, Claren-
don Press, 1995.

[Wie05a] J. Wielemaker. The swi-prolog rdf parser, http://www.swi-
prolog.org/packages/rdf2pl.html. Technical report, 2005.

[Wie05b] J. Wielemaker. Swi-prolog/xpce semantic web library, http://www.swi-
prolog.org/packages/semweb.html. Technical report, 2005.

[WSW03] J. Wielemaker, G. Schreiber, and B. J. Wielinga. Prolog-based infrastructure
for rdf: Scalability and performance. In Proceedings of the 2003 Interna-
tional Semantic Web Conference, pages 644–658, 2003.

