
EU-IST Integrated Project (IP) IST-2003-506826 SEKT

SEKT: Semantically Enabled Knowledge Technologies

Reasoning with Inconsistent
Ontologies: Evaluation

Zhisheng Huang, Frank van Harmelen
(Vrije Universiteit Amsterdam)

Abstract.
EU-IST Integrated Project (IP) IST-2003-506826 SEKT
Deliverable D3.4.2(WP3.4)
PION is a framework for reasoning with inconsistent ontologies. Is is based on the concept of
“selection functions” to obtain meaningful answers from a selection of the axioms of a given
inconsistent ontology. In this document, we investigate several selection functions, test them with
several large scale realistic ontologies, and report the evaluation of PION with those experiments.
Keyword list: ontology management, inconsistency, ontology reasoning

Copyright c© 2006 Department of Artificial Intelligence, Vrije Universiteit Amsterdam

Document Id.
Project
Date
Distribution

SEKT/2005/D3.4.2/v0.9.0
SEKT EU-IST-2003-506826
Jan 20, 2006
unrestricted

SEKT Consortium

This document is part of a research project partially funded by the IST Programme of the Commission of the European
Communities as project number IST-2003-506826.

British Telecommunications plc.
Orion 5/12, Adastral Park
Ipswich IP5 3RE
UK
Tel: +44 1473 609583, Fax: +44 1473 609832
Contact person: John Davies
E-mail: john.nj.davies@bt.com

Empolis GmbH
Europaallee 10
67657 Kaiserslautern
Germany
Tel: +49 631 303 5540, Fax: +49 631 303 5507
Contact person: Ralph Traphöner
E-mail: ralph.traphoener@empolis.com

Jozef Stefan Institute
Jamova 39
1000 Ljubljana
Slovenia
Tel: +386 1 4773 778, Fax: +386 1 4251 038
Contact person: Marko Grobelnik
E-mail: marko.grobelnik@ijs.si

University of Karlsruhe , Institute AIFB
Englerstr. 28
D-76128 Karlsruhe
Germany
Tel: +49 721 608 6592, Fax: +49 721 608 6580
Contact person: York Sure
E-mail: sure@aifb.uni-karlsruhe.de

University of Sheffield
Department of Computer Science
Regent Court, 211 Portobello St.
Sheffield S1 4DP
UK
Tel: +44 114 222 1891, Fax: +44 114 222 1810
Contact person: Hamish Cunningham
E-mail: hamish@dcs.shef.ac.uk

University of Innsbruck
Institute of Computer Science
Techikerstraße 13
6020 Innsbruck
Austria
Tel: +43 512 507 6475, Fax: +43 512 507 9872
Contact person: Jos de Bruijn
E-mail: jos.de-bruijn@deri.ie

Intelligent Software Components S.A.
Pedro de Valdivia, 10
28006 Madrid
Spain
Tel: +34 913 349 797, Fax: +49 34 913 349 799
Contact person: Richard Benjamins
E-mail: rbenjamins@isoco.com

Kea-pro GmbH
Tal
6464 Springen
Switzerland
Tel: +41 41 879 00, Fax: 41 41 879 00 13
Contact person: Tom B̈osser
E-mail: tb@keapro.net

Ontoprise GmbH
Amalienbadstr. 36
76227 Karlsruhe
Germany
Tel: +49 721 50980912, Fax: +49 721 50980911
Contact person: Hans-Peter Schnurr
E-mail: schnurr@ontoprise.de

Sirma AI EAD, Ontotext Lab
135 Tsarigradsko Shose
Sofia 1784
Bulgaria
Tel: +359 2 9768 303, Fax: +359 2 9768 311
Contact person: Atanas Kiryakov
E-mail: naso@sirma.bg

Vrije Universiteit Amsterdam (VUA)
Department of Computer Sciences
De Boelelaan 1081a
1081 HV Amsterdam
The Netherlands
Tel: +31 20 444 7731, Fax: +31 84 221 4294
Contact person: Frank van Harmelen
E-mail: frank.van.harmelen@cs.vu.nl

Universitat Autonoma de Barcelona
Edifici B, Campus de la UAB
08193 Bellaterra (Cerdanyola del Vallès)
Barcelona
Spain
Tel: +34 93 581 22 35, Fax: +34 93 581 29 88
Contact person: Pompeu Casanovas Romeu
E-mail: pompeu.casanovas@uab.es

Executive Summary

PION is a framework for reasoning with inconsistent ontologies, based on the concept
selection functions, to obtain meaningful answers, given an inconsistent ontology.

In this document, we propose different selection functions, we test them with several
realistic ontologies, and we report the evaluation of PION with those experiments.

The first selection function is simply looking at syntactic connections between axioms
in order to decide which axioms are relevant to a query. This relevance requirement
is decreased graudally during reasoning in order to obtain a in increasing subset of the
axioms until it has selected a subset which is small enough to avoid the inconsistency, but
large enough to answer the query.

A second selection function takes into account that we are dealing with ontologies,
and uses the concept hierarchy to guide the selection of relevant axioms.

We apply this framework to two medium-sized ontoloies. These ontologies are a few
hundred axioms each, are taken from external sources, and are “enriched” in order to
make explicit the implicit inconsistencies from which they suffer.

A rather surprising result is that in particular the ontology-oriented selection function
gives very good results: it finds very high percentages of correct answers, while managing
to avoid returning incorrect answers.

The current document builds on the previous deliverable D3.4.1. The second chapter
of the current document recapitulates some of the essential definitions of the earlier deliv-
erable. The third chapter defines a new, more semantically informed selection function.
The main new contribution of this deliverable is in the fourth chapter, where the behav-
iour of the previous and the new selection functions are benchmarked on some non-trivial
ontologies.

Contents

1 Introduction 3

2 Basic definitions 5
2.1 Desired properties of inconsistency reasoners 5
2.2 Selection Functions . 6
2.3 Rating the results . 6
2.4 Quality categories . 7
2.5 Extension Strategies . 9

3 Variants of Selection Functions 10
3.1 Syntactic Relevance . 10
3.2 Relevance-based Selection Functions . 11

4 Test and Evaluation 13
4.1 Implementation and Prototype . 13
4.2 General Approach and Selection of Data 13

4.2.1 General Approach . 13
4.2.2 Selection of Data . 14
4.2.3 Semantic Clarification . 15
4.2.4 Description of selected data . 16
4.2.5 Queries . 16

4.3 Logical Results . 17
4.4 Efficiency Results . 18

4.4.1 Runtime . 18
4.4.2 Number of steps . 19

5 Conclusions and Future Work 22
5.1 Conclusion . 22
5.2 Future Work . 22

2

Chapter 1

Introduction

The Semantic Web is characterised by scalability, distribution, and multi-authorship. All
these characteristics may introduce inconsistencies in the Semantic Web. Limiting lan-
guage expressivity with respect to negation (like RDF and other languages that are based
on negation as failure) can avoid inconsistencies to a certain extent. However, the ex-
pressivity of these languages is quite limited. In particular, OWL is already capable of
expressing inconsistencies.

There are two main ways to deal with inconsistency. One is to diagnose and repair
it when we encounter inconsistencies. In [10], Schlobach and Cornet propose a non-
standard reasoning service for debugging inconsistent terminologies. This is a possible
approach, if we are dealing with one ontology and we would like to improve this ontol-
ogy. Another approach is to simply avoid the inconsistency and to apply a non-standard
reasoning method to obtain meaningful answers. In this work, we will focus on the latter,
which is more suitable for the setting in the web area. For example, in a typical Semantic
Web setting, one would be importing ontologies from other sources, making it impossible
to repair them, and the scale of the combined ontologies may be too large to make repair
effective.

The classical entailment in logics isexplosive: any formula is a logical consequence
of a contradiction. Therefore, conclusions drawn from an inconsistent knowledge base
by classical inference may be completely meaningless. In [5], a framework for reasoning
with inconsistent ontologies has been proposed. The general task of an inconsistency
reasoner is: given an inconsistent ontology, returnmeaningfulanswers to queries (see
chapter 2 for our definition of meaningfulness). The main idea of PION is: given a
selection function, we select some consistent subtheory from an inconsistent ontology.
Then we apply standard reasoning on the selected subtheory to find meaningful answers.
If a satisfying answer cannot be found, the relevance degree of the selection function is
made less restrictive thereby extending the consistent subtheory for further reasoning.

In this document, we propose different selection functions, we test them with several
large scale realistic ontologies, and we report the evaluation of PION with those experi-

3

CHAPTER 1. INTRODUCTION 4

ments.

This document is organised as follows: Chapter 2 overviews the framework of rea-
soning with inconsistent ontologies, and recalls the essential definitions of a previous de-
liverable [6]. Chapter 3 defines variants of the selection functions. Chapter 4.1 discusses
the implementation issues of the variants of selection functions. Chapter 4 describes the
tests on PION. Chapter 5 discusses further work and concludes the document.

Chapter 2

Basic definitions

In this chapter we will recap the basic definitions of our previous deliverable [6].

2.1 Desired properties of inconsistency reasoners

Of course the traditional definition of soundness (formula are only provable if they hold
in all models) cannot be used for inconsistency reasoners. Instead, we propose a weaker
definition, which captures the intuition that only a small part of the theory is affected by
an inconsistency, while the remainder of it is correct. An inconsistency reasoner should
be considered sound if the formulas that follow from an inconsistent theory follow from
a consistent subtheory using classical reasoning:

Definition 2.1.1 (Soundness)An inconsistency reasoning|≈ is sound if the following
condition holds:

Σ |≈ φ⇒ (∃Σ′ ⊆ Σ)(Σ′ 6|= ⊥ andΣ′ |= φ)

Even though an inconsistency reasoner can deal with inconsistent ontologies, it should
itself be consistent about its own answers:

Definition 2.1.2 (Self-consistency)An inconsistency reasoner is self-consistentiff

Σ |≈ φ⇒ Σ 6|≈ ¬φ

These two notions combined define the notions of a meaningful answer and a mean-
ingful reasoner:

Definition 2.1.3 (Meaningfulness)An answer given by an inconsistency reasoner is
meaningful iff it is self-consistent and sound.
An inconsistency reasoner is said to be meaningful iff all of the answers are meaningful.

5

CHAPTER 2. BASIC DEFINITIONS 6

2.2 Selection Functions

An inconsistency reasoner uses a selection function to determine which consistent subsets
of an inconsistent ontology should be considered in its reasoning process. The general
framework is independent of the particular choice of selection function. The selection
function can either be based on a syntactic approach, like Chopra, Parikh, and Wasser-
mann’s syntactic relevance [3], or based on semantic relevance like for example in com-
putational linguistics as in Wordnet [2].

Given an ontology (i.e., a formula set)Σ and a queryφ, a selection functions returns a
subset ofΣ at stepk > 0. Let L be the ontology language, which is denoted as a formula
set. We have the general definition about selection functions as follows:

Definition 2.2.1 (Selection Functions)A selection functions is a mappings : P(L) ×
L×N → P(L) such thats(Σ, φ, k) ⊆ Σ.

Definition 2.2.2 (Monotonic Selection Functions)
A selection functions is calledmonotonicif the subsets it selects monotonically increase
or decrease, i.e.,s(Σ, φ, k) ⊆ s(Σ, φ, k + 1), or vice verse.

For monotonically increasing selection functions, the initial set is either an empty set,
i.e., s(Σ, φ, 0) = ∅, or a fixed setΣ0. For monotonically decreasing selection functions,
usually the initial sets(Σ, φ, 0) = Σ. The decreasing selection functions will remove
some formulas from the inconsistent set step by step until they find a maximally consistent
set.

Monotonically increasing selection functions have the advantage that they do not have
to returnall subsets for consideration at the same time. If a queryΣ |≈ φ can be answered
after considering some consistent subset of the ontologyΣ for some value ofk, then other
subsets (for higher values ofk) don’t have to be considered any more, because they will
not change the answer of the inconsistency reasoner.

2.3 Rating the results

In order to rate the “correctness” of the answers of an inconsistency reasoner, we follow
Marquis and Porquets work in [8], and use Belnaps four valued logic [1] to distinguish
the following four epistemic status for the answers:

Definition 2.3.1 (Epistemic status of answers)
• Over-determined:Σ |≈ φ andΣ |≈ ¬φ1

• Accepted:Σ |≈ φ andΣ 6|≈ ¬φ
1Notice that self-consistent reasoners can never provide overdetermined answers

CHAPTER 2. BASIC DEFINITIONS 7

• Rejected:Σ 6|≈ φ andΣ |≈ ¬φ
• Undetermined:Σ 6|≈ φ andΣ 6|≈ ¬φ

For example, ifΣ = {C v C1, C v C2} andφ = C1 v C2 then the intuitive answer
is undetermined since neitherφ nor¬φ are implied byΣ.

Notice that in contrast to other work on inconsistency reasoning, these states arenot
part of our reasoning framework, in other words: our reasoner|≈ does notreturn any
of these answers, it just returns a boolean two-valued answer. Instead, the above four-
valued epistemic states are a language to speakaboutthe (boolean) answers of|≈. Thus,
for a queryΣ |≈ φ, PION may answer “true”, but the epistemic state of this answer is
determined by the answer that PION gives onΣ |≈ ¬φ. For evaluation purposes, we will
report on epistemic states (e.g. figure 4.1).

2.4 Quality categories

The above four epistemic states are all defined in terms of|≈ itself. We need further no-
tions to compare the behaviour of|≈ that of |=. As golden standard, we cannot use the
classical semantics of|≈, after all, if Σ is inconsistent,Σ |= φ for anyφ, making it not a
very useful golden standard. Instead, we resort to an informal notion of “intuitively cor-
rect answer”. In particular when the inconsistencies in one part ofΣ are not “connected”
(in some informal sense) other parts of theΣ, it is often quite clear what what the intu-
itive answer would be. Consider the following trivial example:Σ = {a, a → b, c,¬c}.
Intuitively, this theory should implyb (by modes ponens from{a, a → b}), and should
not imply ¬b, since its inference under|= is only justified by the inconsistency{c,¬c}
which is some “unconnected” to the facts abouta andb. We emphasise that this notion
of “intuitive answer” is informal, and must be provided by human inspection. We use
the following notions to capture the differences between an answer by an inconsistency
reasoner and the intuitive answer:

Definition 2.4.1 (IA, CIA, CA, RA)

• Intended Answer: |≈ agrees with the intuitive answer

• Counter-intuitive Answer : |≈ provides the opposite to the intuitive answer.
Namely, the intuitive answer is ’accepted’ whereas the|≈ answer is ’rejected’, or
vice versa.

• Cautious Answer: The intuitive answer is ’accepted’ or ’rejected’, but the|≈ an-
swer is ’undetermined’.

• Reckless Answer: the |≈ answer is ’accepted’ or ’rejected’ whereas the intuitive
answer is ’undetermined’.

CHAPTER 2. BASIC DEFINITIONS 8

Figure 2.1: Linear Extension Strategy.

CHAPTER 2. BASIC DEFINITIONS 9

2.5 Extension Strategies

An inconsistency reasoner that uses a monotonically increasing/decreasing selection func-
tion will be called an inconsistency reasoner that uses alinear extension strategyand a
linear reduction strategyrespectively.

A linear extension strategy is carried out as shown in Figure 2.1, where|≈ is used
to denote the inconsistency-reasoner, and|= denotes a classical reasoner. Given a query
Σ |≈ φ, the initial consistent subsetΣ′ is set. Then the selection function is called to
return a consistent subsetΣ′′, which extendsΣ′, i.e.,Σ′ ⊂ Σ′′ ⊆ Σ for the linear extension
strategy. If the selection function cannot find a consistent superset ofΣ′, the inconsistency
reasoner returns the answer‘undetermined’(i.e., unknown) to the query. If the setΣ′′

exists, a classical reasoner is used to check ifΣ′′ |= φ holds. If the answer is ‘yes’, the
inconsistency reasoner returns the’accepted’answerΣ |≈ φ. If the answer is ‘no’, the
inconsistency reasoner further checks the negation of the queryΣ′′ |= ¬φ. If the answer
is ‘yes’, the inconsistency reasoner returns the’rejected’ answerΣ |≈ ¬φ, otherwise the
current result is undetermined (def.1), and the whole process is repeated by calling the
selection function for the next consistent subset ofΣ which extendsΣ′′.

One of the reasons for concentrating on a linear extension strategy in this work is that
an inconsistency reasoner using a linear extension strategy is always meaningful. How-
ever, it is clear that the linear extension strategy may result in too many ‘undetermined’
answers to queries when the selection function picks the wrong sequence of monotoni-
cally increasing subsets. It would therefore be useful to measure the successfulness of
(linear) extension strategies. Notice, that this depends on the choice of the monotonic
selection function.

We call this strategy alinear one, because the selection function only follows one
possible ‘extension chain’ for creating consistent subsets. The advantages of the linear
strategy is that the reasoner can always focus on the current working setΣ′. The reasoner
doesn’t need to keep track of the extension chain. The disadvantage of the linear strategy
is that it may lead to an inconsistency reasoner that is undetermined. There exists other
strategies which can improve the linear extension approach, for example, by backtracking
and heuristics evaluation. We are going to discuss a backtracking strategy in Section 3.1.
The second reason why we call the strategy linear is that the computational complexity of
the strategy is linear with respect to the complexity of the ontology reasoning. Letn be
the cardinality|Σ| of an ontologyΣ and let the complexity of|= beE.

Proposition 2.5.1 (Complexity of Linear Extension) The complexity of|≈ in the linear
extension strategy isn · E.

In other words, the linear extension strategy does not significantly increase the complexity
of the ontology reasoning, because typicallyE is alreadyPSPACE-completefor standard
concept languages [4].

Chapter 3

Variants of Selection Functions

3.1 Syntactic Relevance

[3] proposes syntactic relevance to measure the relationship between two formulas in
belief sets, so that the relevance can be used to guide the belief revision based on Schaerf
and Cadoli’s method of approximate reasoning. Given a formula setΣ, two atomsp, q are
directly relevant, denoted byR(p, q,Σ) iff there is a formulaα ∈ Σ such thatp, q appear in
α. A pair of atomsp andq arek-relevant with respect toΣ iff there existp1, p2, . . . , pk ∈ L
such that: (a)p, p1 are directly relevant; (b)pi, pi+1 are directly relevant,i = 1, . . . , k−1;
and (c)pk, q are directly relevant (i.e., directly relevant isk-relevant fork = 0).

The notions of relevance above are based on propositional logics. However, ontology
languages are usually written in some fragment of first order logic. We extend the ideas
of relevance to those first-order logic-based languages by restricting relevance to the co-
occurrence of only the predicate letters or constant symbols. The following definition
specialises the general definition of relevance for the case whereφ is a formula in an
ontology.

Given a formulaφ, we useI(φ), C(φ), R(φ) to denote the sets of individual names,
concept names, and relation names that appear in the formulaφ respectively.

Definition 3.1.1 (Direct symbol-relevance)Two formulaφ, ψ are directly relevant iff
there is a common name which appears both in formulaφ and formulaψ, i.e.,
I(φ) ∩ I(ψ) 6= ∅ ∨ C(φ) ∩ C(ψ) 6= ∅ ∨R(φ) ∩R(ψ) 6= ∅.

Definition 3.1.2 (Direct relevance to a set)A formulaφ is relevant to a formula setΣ iff
there exists a formulaψ ∈ Σ such thatφ andψ are directly relevant.

We can similarly specialise the notion of k-relevance.

10

CHAPTER 3. VARIANTS OF SELECTION FUNCTIONS 11

Definition 3.1.3 (k-relevance)Two formulasφ, φ′ are k-relevant with respect to a for-
mula setΣ iff there exist formulasψ0, . . . ψk ∈ Σ such thatφ andψ0, ψ0 andψ1, . . ., and
ψk andφ′ are directly relevant.

Definition 3.1.4 (k-relevance to a set)A formulaφ is k-relevant to a formula setΣ iff
there exists a formulaψ ∈ Σ such thatφ andψ are k-relevant with respect toΣ.

The above definition of symbol-relevance is based onanysyntactic overlap between
formula (def. 3.1.1). These means that the set ofk-relevant formula grows very rapidly,
with the danger that it becomes inconsistent very rapidly. We can be more conservative in
growing the set ofk-relevant formula by restricting def. 3.1.1 to only the most important
overlaps between formula. In this work we are not dealing with arbitrary logical theories
Σ, but we assume thatΣ represents an ontology. Since the backbone of any ontology is the
concept hierarchy, it makes sense to specialise symbol-relevance (i.e. any co-occurring
symbol) to concept-relevance:

Definition 3.1.5 (Direct concept-relevance)
An axiomφ is directly concept-relevant to a formulaψ, iff
(i) C1 ∈ C(ψ) if φ has the formC1 v C2,
(ii) C1 ∈ C(ψ) or C2 ∈ C(ψ) if φ has the formC1 = C2,
(iii) C1 ∈ C(ψ) or · · · or Cn ∈ C(ψ) if φ has the formdisjoint(C1, · · · , Cn).

Notice that clauses (ii) and (iii) of this definition simply amount to restricting the de-
finition of symbol-relevance to co-occurring concept-symbols (instead of arbitrary sym-
bols). The reason the asymmetry in clause (i) (only taking into account co-occurring
symbols in the “small” end of a subsumption clause) is to direct the expansion function in
the right direction of the subsumption hierarchy. In other words: here we are exploiting
the fact that we are dealing with ontologies, and not just with arbitrary logical theories.

We can then define the notion ofk-concept-relevance analogously as above in the
obvious way.

3.2 Relevance-based Selection Functions

In inconsistency reasoning we can use syntactic relevance to define a selection functions
to extend the query ‘Σ |≈ φ?’ as follows: We start with the query formulaφ as a starting
point for the selection based on syntactic relevance. Namely, we define:

s(Σ, φ, 0) = ∅.

Then the selection function selects the formulasψ ∈ Σ which are directly relevant toφ
as a working set (i.e.k = 1) to see whether or not they are sufficient to give an answer to
the query. Namely, we define:

s(Σ, φ, 1) = {ψ ∈ Σ | φ andψ are directly relevant}.

CHAPTER 3. VARIANTS OF SELECTION FUNCTIONS 12

If the reasoning process can obtain an answer to the query, it stops. Otherwise the selec-
tion function increases the relevance degree by 1, thereby adding more formulas that are
relevant to the current working set. Namely, we have:

s(Σ, φ, k) = {ψ ∈ Σ | ψ is directly relevant tos(Σ, φ, k − 1)},

for k > 1.

This leads to a ”fan out” behaviour of the selection function: the first selection is the
set of all formulae that are directly relevant to the query; then all formulae are selected
that are directly relevant to that set, etc. This intuition is formalised in the following:

Proposition 3.2.1 The syntactic relevance-based selection functions is monotonically
increasing.

All of the above holds for either of the two relevance notions defined above (i.e.
symbol-relevance or concept-relevance).

The syntactic relevance-based selection functions defined above usually grows up to
an inconsistent set rapidly. That may lead to too many undetermined answers. In order to
improve it, we can require that the selection function returns a consistent subsetΣ′′ at the
stepk whens(Σ, φ, k) is inconsistent such thats(Σ, φ, k − 1) ⊂ Σ′′ ⊂ s(Σ, φ, k). It is
actually a kind of backtracking strategy which are used to reduce the number of undeter-
mined answers to improve the linear extension strategy. We call the procedure anover-
determined processing(ODP) of the selection function. Note that the over-determined
processing does not need to exhaust the powerset of the sets(Σ, φ, k) − s(Σ, φ, k − 1),
because of the fact that if a consistent setS cannot prove or disprove a query, then nor
can any subset ofS. Therefore, one approach of ODP is to return just a maximally con-
sistent subset. Letn be |Σ| andk ben − |S|, i.e., the cardinality difference between the
ontologyΣ and its maximal consistent subsetS (note thatk is usually very small), and let
C be the complexity of the consistency checking. The complexity of the over-determined
processing is polynomial to the complexity of the consistency checking:

Proposition 3.2.2 (Complexity of ODP) The complexity of over-determined processing
is nk · C.

Note that ODP introduces a degree of non-determinism: selecting different maximal con-
sistent subsets ofs(Σ, φ, k) may yield different answers to the queryΣ |≈ φ. The simplest
example of this isΣ = {φ,¬φ}.

Chapter 4

Test and Evaluation

4.1 Implementation and Prototype

In [6] we have reported on our prototype of an inconsistency reasoner (PION) imple-
mented in SWI-Prolog.1 PION implements an inconsistency reasoner based on an linear
extension strategy and the syntactic relevance-based selection function as discussed in
Sections 2.5 and 3.1. The selection function returns the first maximal consistent subset
for its over-determined processing. PION is powered by XDIG, an extended DIG De-
scription Logic interface for Prolog [7]. PION supports the TELL requests in DIG data
format and in OWL, and the ASK requests in DIG data format. A prototype of PION is
available for download at the website2.

4.2 General Approach and Selection of Data

4.2.1 General Approach

The goal of our evaluation is to measure the behaviour of PION on ontologies that are
realistic, both in size, expressivity, structural properties, etc. In our evaluation, we will

1. select realistic inconsistent ontologies

2. run a realistic set of queries on these ontologies using PION

3. tabulate how often PION gives answers of the different types defined in section 2.4:
intended, counter-intuitive, cautious or reckless.

1<http://www.swi-prolog.org >
2<http://wasp.cs.vu.nl/sekt/pion >

13

http://www.swi-prolog.org
http://wasp.cs.vu.nl/sekt/pion

CHAPTER 4. TEST AND EVALUATION 14

4. tabulate performance characteristics of PION, both in terms of run-time and in terms
of numbers of steps taken

4.2.2 Selection of Data

Concerning the requirement forrealistic ontologies: Some aspects of ontologies can be
measured reasonably well (number. of concepts, depth of hierarchy, expressivity of the
language, etc). However, it is not at all a priori clear which properties of ontologies will
affect the behaviour of PION. Therefore, we want to userealisticontologies for our tests.
In order to avoid experimental bias as far as possible, we want to use ontologies that have
been constructed by third parties, and that are also used by third parties (preferably used
by others than their authors).

Of course, we require ontologies that containinconsistencies, since on consistent on-
tologies,|≈ coincides with|=, and PION simply reduces to a very inefficient implemen-
tation of a standard DL reasoner3.

We can distinguish different processes by which ontologies can become inconsistent
(see also SEKT deliverable D3.6.2 [12]):

• migration: inconsistencies may arise because of migrating an ontology to another
formalism. The DICE ontology used in deliverable D3.6.2 [12] is an example of
this.

• clarification: many current ontologies are expressed in RDF/RDF-Schema, which
implies that at first sight they do not include inconsistencies. However, as we dis-
cuss in the next subsection, important implicit assumptions underly such ontologies.
When such assumptions are made explicit through a mechanism of “clarification”
(again: discussed in the next subsection), significant inconsistencies do show up.

• merging: even though two individual ontologies may each be consistent, their com-
bination may well end up being inconsistent.

Of these three sources of inconsistency, the first one (migration) would not yield an
appropriate benchmark. Ontology-reasoning as done by PION is meant to be deployed at
run-timeof an application system (e.g. for answering user-queries from an inconsistent
ontologies), while migration is a task that is doneoff-lineduring the ontology-engineering
stage (this dual structure is also reflected in the global SEKT architecture, with the “en-
gineering” components and the “runtime” components: PION is intended as a runtime
component, while migration is a process at engineering time.

3It would iteratively call a standard DL reasoner over increasingly large subsets of the ontology until
a sufficiently large subset was obtained to answer the query. This kind of strategy is well known to be
inefficient in the general case.

CHAPTER 4. TEST AND EVALUATION 15

The third source (merging) would have indeed provided useful datasets for bench-
marking PION. We briefly considered using the same benchmark as in SEKT deliverable
D3.6.2 [12] (merging SUMO and CYC), but in the end refrained from these experiments
because of worries over efficiency-limitations (many of the SUMO/CYC experiments in
[12] suffered from time-outs because of the size of the ontologies).

Consequently, we have chosen to perform the PION benchmarking on inconsistencies
caused by the clarification process. This will be discussed in the next section

4.2.3 Semantic Clarification

Already in earlier work, we have used with some succes a method calledsemantic clarifi-
cation: RDF(S) ontologies are by definition free from inconsistencies, but closer inspec-
tion of such ontologies has shown that this is only due to the fact of the impoverished lan-
guage: the underlying conceptualisation does actually contain inconsistencies, but these
simply do not show up in the ontology because some aspects of the conceptualisation
cannot be made explicit due to the impoverished language. In particular, disjointness
assumptions between classes are often clear from the names given to these classes, but
cannot be expressed explicitly in RDF(S).

In [9] we have shown that making such implicit assumptions explicit (at the cost of
using a more expressive ontology language, particularly some fragment of OWL DL)
does reveal important inconsistencies in many ontologies. This involves automatically
adding disjointness statements to an ontology by assuming that all the direct siblings
in a well-defined is-a hierarchy are disjoint. Most of these disjointness statements are
indeed correct, and reflect the implicit modelling assumptions underlying the ontology.
However, some of them turn out to be overspecified (between classes that are not actually
disjoint), and they will cause the ontology to become inconsistent. [9] shows how these
overspecified disjointness statements can be pinpointed using debugging techniques (see
also SEKT deliverable D3.6.1 [11]). Here we will investigate how well we can reason in
the presence of such overspecified disjointness statements.

Clearly, not all RDF(S) hierarchies will result in inconsistencies when disjointness
statements are added. [9] shows that the well-known UNSPC product catalogue pro-
duces no inconsistencies (since its structure is simply too weak), while the Teknowledge
Transport Ontology yields 150 inconsistencies after adding 89 disjointness axioms to 450
classes.

Furthermore, our choice of ontologies was limited by the computational power re-
quired to run many queries over them (see below). This precluded the choice of such
interesting ontologies such as the well known SUMO top-level ontology, and the MILO
mid-level ontology (intended to act as a bridge between the high-level abstractions of
SUMO and domain ontologies).

CHAPTER 4. TEST AND EVALUATION 16

4.2.4 Description of selected data

Based on these considerations, we have decided on the use of the following ontologies:

• Transportation Ontology4: some 450 concepts in the transportation domain, de-
scribing different types of transportation connections (e.g. Railways, Highways,
Waterways, Pipelines), different kinds of transportation vehicles (e.g. Land Vehi-
cles, Water Vehicles, Air Vehicles), different Transportation Authorities and Regu-
lations, Transportation Organisations and Transportation Personnel. The Ontology
was constructed under US Government funding from sources in the military, the
government and commerce: Universal Joint Task List5; Glossary of Landform and
Geologic Terms6; Householders Goods Forwarders Association of America7; In-
formation about government organisations8; sea and shipping terms9; and general
transportation terms from Congressional Research Service (CRS) reports10

• Communication Ontology: some 200 concepts on communication technology, de-
scribing different types of radio, television and telephone systems as well as Internet
technology.

• Enriched MadCow Ontology: The MadCow ontology is a small but well-known
tutorial ontology explicitly designed to illustrate OWL DL expressivity. It displays a
number of non-trivial inconsistencies after disjointness statements have been added.
This ontology was not added because of realistic content or size, but because of its
intricate use of OWL constructs.

4.2.5 Queries

For each of the selected ontologies, we ran a significant number of subsumption queries
(encoded in a particular way, see below).

In principle, an ontology onn concepts generates somen2 potential subsumption
queries. For the Transportation ontology, this would amount to some 20.000 queries.
The main bottleneck in such a number of queries is not even the amount of CPU time re-
quired, but mainly the evaluation of the results. Remember that the notion of an “intended
answer” is only defined by human inspection.

4<http://ontology.teknowledge.com/ >
5<http://www.dtic.mil/doctrine/jel/cjcsd/cjcsm/m3500 4b.pdf >
6<http://www.statlab.iastate.edu/soils/nssh/629.htm >
7<http://www.hhgfaa.org/public/industryterms1.asp#B >
8<www.dot.gov >
9<http://www.trans-inst.org/seawords.htm >

10<http://www.ncseonline.org/NLE/CRS/ >

http://ontology.teknowledge.com/
http://www.dtic.mil/doctrine/jel/cjcsd/cjcsm/m3500_4b.pdf
http://www.statlab.iastate.edu/soils/nssh/629.htm
http://www.hhgfaa.org/public/industryterms1.asp#B
www.dot.gov
http://www.trans-inst.org/seawords.htm
http://www.ncseonline.org/NLE/CRS/

CHAPTER 4. TEST AND EVALUATION 17

ontology relevance queries IA CA RA CIA IA%

MadCow+ symbol 2594 2538 0 54 2 98%
concept 2594 2402 192 0 0 93%

Communication symbol 6576 6396 8 164 8 97%
concept 6576 6330 246 0 0 96%

Transport symbol 6258 5504 0 752 2 88%
concept 6258 6228 30 0 0 99%

Table 4.1: Running PION on realistic ontologies

Given these prohibitive costs, we have decided to run a randomly generated subset
of subsumption queries, on the assumption that this does not introduce any bias into the
query-set.

For each conceptC in those ontologies, we create an instanceiC . We make both
a positive instance queryiC ∈ C ′ and a negative instance queryiC ∈ ¬C ′ for some
conceptsC ′ in the ontologies. QueryingiC ∈ C ′ is equivalent to asking the subsumption
of C v C ′ sinceiC is an arbitrary instance ofC without any further known properties or
restrictions.

4.3 Logical Results

Table 4.1 shows the results of running PION the selected ontologies using the following
abbreviations:

relevance = using selection function based on
symbol-relevance or concept-relevance

queries = number of queries
IA = number of Intended Answers

CA = number of Cautious Answers
RA = number of Reckless Answers

CIA = number of Counter-Intuitive Answers
IA% = rate of Intended Answers: IA/queries

All data underlying these results are available at<http://wasp.cs.vu.nl/
sekt/pion/test/ >.

A first observation is to notice what happens when switching from symbol relevance
to concept relevance. The Intended Answers (IA) drop, which is a disadvantage, but the
Counter-Intuitive answers (CIA) also drop, in fact to 0. Also, the Cautious Answers rise
and the Reckless Answers drop (again to 0).

Thus, when precision is preferred over recall11, concept-relevance is much better than

11 Recall measuring the percentage of intended answers returned, and precision measuring the percentage

http://wasp.cs.vu.nl/sekt/pion/test/
http://wasp.cs.vu.nl/sekt/pion/test/

CHAPTER 4. TEST AND EVALUATION 18

Example Queries IA CA RA CIA IA Rate(%) ICR Rate(%)

Bird 50 50 0 0 0 100 100
Brain 42 36 4 2 0 85.7 100
MarriedWoman 50 48 0 2 0 96 100
MadCow 254 236 16 0 2 92.9 99

IA = Intended Answers, CA = Cautious Answers, RA = Reckless Answers, CIA =
Counter-Intuitive Answers, IA Rate = Intended Answers(%), ICR Rate = IA+CA+RA(%).

Table 4.2: Running PION on artificial test-ontologies

general symbol-relevance. This is explainable because concept-relevance chooses much
smaller sets than symbol-relevance, and suffers less from over-expanding the set of se-
lected axioms to obtain an inconsistent subset.

Even though the tested strategy is very simple (a basic linear extension strategy, using
an elementary syntactic relevance function), the resulting systems makes for a very high
quality approximation, with> 90% recall and 100% precision on the above dataset.

However, we would like to point out that the high rate of the intended answers includes
many ’undetermined’ answers.

For completeness, we also repeat in table 4.2 the results of running PION with only
the symbol-relevance function on some small test examples, as reported in [6]. Although
not run on realistic examples, these figures are in line with what we observed in table 4.1

4.4 Efficiency Results

4.4.1 Runtime

Whereas the previous section reported on the logical correctness or otherwise of PION’s
answers, in this section we report on the performance characteristics.

Figure 4.1 shows the average runtime in seconds per query when using symbol-
relevance and concept-relevance on the three ontologies. All the tests were done on a
low-end PC, with 550Mhz CPU, 256 MB memory, running Windows 2000.

This shows that answering queries with concept relevance took much less time than
with symbol relevance (roughly a factor1/2 − 1/3 in all cases). This is all the more
interesting because not only does the runtime go down when using concept relevance,
we saw in the previous section that the quality of the answers goes up. This shows that
the heuristic underlying concept relevance (using the class-hierarchy as the main guiding
principle for the selection function) is indeed an improvement over looking for arbitrary

of non-counter-intuitive answers.

CHAPTER 4. TEST AND EVALUATION 19

0

2

4

6

8

10

12

14

16

symbol 5.27 12.68 14.3
concept 2.51 6.35 9.59

Madcow Communication Transport

Figure 4.1: averageruntime in secondsrequired per query when using symbol-relevance
and concept-relevance on the three ontologies.

co-occurring symbols, as done in the original work Chopra et al. [3].

4.4.2 Number of steps

It is also interesting to see to what this reduction in runtime can be attributed. Although
the reduction is about a factor of1/2 − 1/3 in all cases, the underlying mechanisms seem
to be very different.

Figure 4.2 shows the average number of expansion steps required per query before
PION was able to give an answer. This is the value of the parameterk in definition 3.1.5.
Put differently, it is the number of iterations that must be made in the diagram of figure
2.1 before PION provides an answer.

Figure 4.3 shows the average number of backtracking steps per query for processing
over-determined axiom sets. Remember that when the current set of considered axioms
becomes itself inconsistent (in other words, it becomes overdetermined), PION backtracks
to a maximally consistent subset. This is called over-determined processing, or ODP for
short.

All these data are represented in a more compact way in table 4.3

The above shows that that the run-time gain observed in figure 4.1 is actually causes

CHAPTER 4. TEST AND EVALUATION 20

0

1

2

3

4

5

6

7

symbol 3.61 6.13 4.07
concept 3.59 3.33 3.35

Madcow Communicati
on Transport

Figure 4.2: average number ofexpansionstepsrequired per query when using symbol
-relevance and concept-relevance on the three ontologies.

0

0.5

1

1.5

2

2.5

symbol 0.91 1.63 2.3
concept 0.08 0.99 0.77

Madcow Communicati
on Transport

Figure 4.3: average number ofODP stepsrequired per query when using symbol -
relevance and concept-relevance on the three ontologies.

CHAPTER 4. TEST AND EVALUATION 21

ontology relevance Time (Sec.) Expansion(steps) ODP(steps)

MadCow+ symbol 5.27 3.61 0.91
concept 2.51 3.59 0.08

Communication symbol 12.68 6.13 1.63
concept 6.35 3.33 0.99

Transport symbol 14.30 4.07 2.30
concept 9.59 3.35 0.77

Table 4.3: Run-time results and number of steps required for the benchmarks

by a variety of mechanisms. In the Communication and Transport ontologies, the gain
is caused by a reduction in both the number of expansion steps (almost half), and the
number of ODP steps. In the MadCow+ ontology on the other hand, the gain in runtime
is entirely attributable to a reduction in the number of ODP steps (by a factor of 10).

Although not shown in these figures, the number of ODP steps has an interesting
distribution over the different queries. Although the average number of required ODP
steps is never very far from 1, the distribution is actually very uneven: For example when
using concept-relevance on the Communication ontology, some 10-15% of all queries
does not need any ODP processing at all (i.e. ODP=0); most cases (on the order of
80-90%) does need ODP backtracking, but PION finds a suitable consistent subset in
a single step (ODP=1), and only a very small number of queries (on the order of 1%)
needs multiple backtracking steps, some as many as 100 steps (although these cases are
very rare, much below 1%). Similar results are obtained with concept-relevance on the
Transport ontology: 95% of queries can be solved with 0 or 1 ODP step, and only 5%
needs any significant backtracking.

Studying which properties of ontologies determine such behaviours is a point for fu-
ture work.

Chapter 5

Conclusions and Future Work

5.1 Conclusion

In earlier deliverables, we have presented a framework for reasoning with inconsistent
ontologies, based on the notion of selection functions.

We have also implemented a prototype of this framework called PION. In the current
report, we have provided the evaluation report of the prototype by applying it to the several
inconsistent ontology examples. The tests show that our approach can obtain intuitive
results in most cases for reasoning with inconsistent ontologies. Considering the fact that
standard reasoners always results in either meaningless answers or incoherence errors for
queries on inconsistent ontologies, we can claim that PION can do much better, because
it can provide a lot of intuitive, thus meaningful answers. This is a surprising result given
the simplicity of our selection function.

5.2 Future Work

In future work, we are going to test PION with more large-scale ontology examples, i.e.
essentially repeating the experiments above, and see if we can determine which proper-
ties of ontologies determine the success or failure of our approach on these ontologies.
Obvious candidates are the terminologies that were used to benchmark the diagnosis of
inconsistencies, in particular the SUMO/CYC combination.

We are also going to investigate different approaches for selection functions. In par-
ticular, we have an interest in non-uniform, semantically inspired selection functions us-
ing domain-specific background knowledge. Another option is to use weak background
knowledge like co-occurrence of concept-names on the Web as the basis for a lightweight
semantic selection function.

An essential limitation of this benchmarking effort is that it is a “laboratory” bench-

22

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 23

mark: it tells us how percentages of answers given of various types, it gives us insight
in the run-time performance, it shows the impact of having different selection functions.
However, it doesnot show us whether an actual user in an actual application scenario
would have benefitted from the answers given by PION. For this we are currently study-
ing the ontology constructed in the “BT case study”. This ontology is used for question
answering, but does in fact turn out to be inconsistent. This would appear to give oppor-
tunities for deploying PION in an application setting.

Bibliography

[1] N. Belnap. Modern Uses of Multiple-Valued Logic, chapter A useful four-valued
logic, pages 8–37. Reidel, Dordrecht, 1977.

[2] A. Budanitsky and G. Hirst. Semantic distance inwordnet: An experimental,
application-oriented evaluation of five measures. InWorkshop on WordNet and
Other Lexical Resources, Second meeting of the North American Chapter of the
Association for Computational Linguistics, Pittsburgh, PA, 2001.

[3] S. Chopra, R. Parikh, , and R. Wassermann. Approximate belief revision prelimini-
nary report.Journal of IGPL, 2000.

[4] F. Donini. Description Logic Handbook, chapter Complexity of reasoning, pages
96–136. OUP, 2003.

[5] Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontolo-
gies. InProceedings of the International Joint Conference on Artificial Intelligence
- IJCAI’05, 2005.

[6] Z. Huang, F. van Harmelen, A. ten Teije, P. Groot, and C. Visser. Reasoning with
inconsistent ontologies: a general framework. Project Report D3.4.1, SEKT, 2004.

[7] Zhisheng Huang and Cees Visser. Extended dig description logic interface support
for prolog. Deliverable D3.4.1.2, SEKT, 2004.

[8] P. Marquis and N. Porquet. Resource-bounded paraconsistent inference.Annals of
Mathematics and Artificial Intelligence, 39:349–384, 2003.

[9] S. Schlobach. Semantic clarification by pinpointing. InProceedings of the second
European Semantic Web conference, LNCS. Springer Verlag, 2004.

[10] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging of
description logic terminologies. InProceedings of the eighteenth International Joint
Conference on Artificial Intelligence, IJCAI’03. Morgan Kaufmann, 2003.

[11] S. Schlobach and Zh. Huang. Inconsistent ontology diagnosis: Framework and
prototype. Project Report D3.6.1, SEKT, 2005.

24

BIBLIOGRAPHY 25

[12] S. Schlobach, Zh. Huang, and R. Cornet. Inconsistent ontology diagnosis: Evalua-
tion. Project Report D3.6.2, SEKT, 2006.

	1 Introduction
	2 Basic definitions
	2.1 Desired properties of inconsistency reasoners
	2.2 Selection Functions
	2.3 Rating the results
	2.4 Quality categories
	2.5 Extension Strategies

	3 Variants of Selection Functions
	3.1 Syntactic Relevance
	3.2 Relevance-based Selection Functions

	4 Test and Evaluation
	4.1 Implementation and Prototype
	4.2 General Approach and Selection of Data
	4.2.1 General Approach
	4.2.2 Selection of Data
	4.2.3 Semantic Clarification
	4.2.4 Description of selected data
	4.2.5 Queries

	4.3 Logical Results
	4.4 Efficiency Results
	4.4.1 Runtime
	4.4.2 Number of steps

	5 Conclusions and Future Work
	5.1 Conclusion
	5.2 Future Work

