
Programmability of Intelligent Agent Avatars

Zhisheng Huang
Vrije University of Amsterdam

De Boelelaan 1081
1081 HV Amsterdam

The Netherlands

huang@cs.vu.nl

Anton Eliëns
Vrije University of Amsterdam

De Boelelaan 1081
1081 HV Amsterdam

The Netherlands

eliens@cs.vu.nl

Cees Vissser
Vrije University of Amsterdam

De Boelelaan 1081
1081 HV Amsterdam

The Netherlands

ctv@cs.vu.nl

ABSTRACT
In this paper, we propose an approach to the programmabil-
ity of intelligent agent avatars, supported by the distributed
logic programming language DLP. Intelligent agent avatars
can be considered as one of the applications of web agents.
As one of the testbeds of 3D web agents, we are developing
and implementing soccer playing avatars. We discuss how
the language DLP can be used to support soccer playing
avatars using rules to guide their behaviors in networked
virtual environments.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence;
H.4.m [Information Systems]: Miscellaneous

General Terms
Intelligent Agent

Keywords
avatar, intelligent agent, distributed logic programming, net-
worked virtual environment

1. INTRODUCTION
In recent years, more and more applications of networked
virtual environments, in particular 3D virtual communities,
have been developed. Popular 3D virtual community servers
are Active World [1] and Blaxxun Interactive [2]. However,
most of them use a relatively simple and rather static repre-
sentation of their users by avatars. Avatars represented by
intelligent agents significantly improve the interface and the
capabilities of networked virtual environments [3, 16].

The Blaxxun community server does provide support for
agents. Agents in the Blaxxun community server may be
programmed to have particular attributes and to react to

events in a particular way. As a remark, originally the
Blaxxun agents were called bots. In our opinion the func-
tionality of Blaxxun agents does not surpass that of simple
bots and we consider the term agent to be a misnomer. De-
spite the large number of built-in events and the rich reper-
toire of built-in actions, the Blaxxun agent platform in itself
is rather limited in functionality, because event-action pat-
terns are not powerful enough to program complex behavior
that requires maintaining information over a period of time.

In this paper, we propose an approach to the programmabil-
ity of intelligent agent avatars supported by the distributed
logic programming language DLP [5]. Our research is part
of a Dutch research project WASP, for Web Agent Sup-
port Program [15]. As part of this research project we are
developing PAMELA, a Personal Assistant for Maintaining
Electronic Archives. PAMELA has a general architecture
of web agents [8], which can be either 3D avatar-embodied
agents, or 2D text-based interface agents. In this paper, we
will focus on the approach to 3D avatar-embodies agents.
We are developing and implementing soccer playing avatars
on the Web as one of the benchmark examples for our 3D
web agent framework.

2. WEB AGENTS AND ARCHITECTURE

2.1 A taxonomy of web agents
Many types of web agents have been proposed in recent
years, which range from domain-dependent agents, like e-
commerce agents, information gathering agents, expertise
seeking agents, travel assistant agents, virtual community
agents, to function-dependent agents, like negotiation agents,
co-operating agents, and problem solving agents. The nat-
ural questions related to that phenomenon are: what are
the relations among so many different types of web agents?
Are they redundant or overlapped? Is there a taxonomy to
classify them?

In [7], we propose a taxonomy of web agents, which en-
compasses agents that provide a text-based interface to, for
example, information retrieval services, as well as avatar-
embodied guides that help visitors to navigate in virtual
environments. This section is a brief introduction to the
taxonomy of web agents.

We consider the following three major dimensions of web
agents.



• 2D versus 3D.
A 2D web agent is one which is aware of http, file, and
ftp protocols, whereas a 3D web agent is one which is
not only aware of these protocols, but also virtual real-
ity specific protocols. Typical 2D web agents provide a
text-based interface, for example, information retrieval
services. Typical 3D web agents are avatar-embodied
guides that help visitors to navigate in virtual environ-
ments.

• Client versus server.
As the names imply, a client web agent is on the client
side, whereas a server web agent is on the server side.
A typical client web agent can serve as a personal in-
formation assistant. A typical server web agent can
serve as the front-end of web servers to offer informa-
tion more intelligently.

• Singularity versus multiplicity.
A single web agent doesn’t cooperate with other web
agents, whereas frameworks of multiple web agents ex-
hibit agent collaboration patterns in order to achieve
a common goal.

3D-server-multiple-agent

3D-server-single-agent 3D-client-multiple-agent 2D-server-multiple-agent

3D-client-single-agent 2D-server-single-agent 2D-client-multiple-agent

2D-client-single-agent

PPPPPPP

PPPPPPP

PPPPPPP

PPPPPPP

�������

��
��
��
�

��
��
��
�

��
��
��
�

Figure 1: Lattice of Web Agents

There are different types of web agents based on these three
dimensions, which consists of a complexity lattice of web
agent types as outlined in Figure 1. 3D-server-multiple-
agents are at the top of the complexity hierarchy, whereas
2D-client-single-agents are at the bottom. These dimensions
are not exhaustive. In particular, we do not consider the
dimension “stationariness versus mobility”. However, the
combinations based on the dimension of “stationariness ver-
sus mobility” agents can be generalized accordingly, based
on the current taxonomy. All the dimensions we consider
for the taxonomy are directly web-dependent.

The dimension “2D-3D” specifies the internet protocols agents
have to be aware of, the dimension “client-server” is con-
cerned with internet service modes agents have to offer,
and the dimension “singularity-multiplicity” determines the
agent communication language. We do not consider the
functional dimension which is not directly relevant for the
Web, like cooperating agents, problem solving agents, and
negotiation agents. We also do not discuss the dimensions
which are domain dependent, like expertise seeking agents
and e-commerce agents. However, our taxonomy does cover
most types of these agents. They are either a 2D agent

or 3D agent, either a client agent or server agent, either
single agent or multiplicity agent or some of their combina-
tions. Different types of web agents suggest different types
of interaction modes with users and web servers. See [7] for
details.

2.2 3D Web Agents
In this paper, we focus on the discussion of 3D web agents.
The following examples describe typical 3D web agents.

• 3D-Server-Multiple Web Agent.
The configuration of 3D-server-multiple-agent on the
Web is shown in Figure 2. The agents are part of
virtual reality servers, more exactly, virtual commu-
nity servers, for they interact with multiple users and
agents. Users communicate with virtual reality servers
via web browsers. The agents interact with each other
in the virtual reality server and communicate with web
users. As agents in virtual reality, they are usually em-
bodied by their avatars.

Virtual Reality Server

Web Agent
Web Agent

Web Agent

Web Browser

User

Web Browser

User

Web Browser

User

Figure 2: 3D-server-multiple web agent

These kinds of web agents have a great deal of appli-
cation potentials, which range from avatar-embodied
guides that help visitors in information retrieval tasks
and navigation in virtual environments, e-commerce
shopping assistant agents in 3D-virtual shops, to in-
telligent agents in multiple player computer games.

• 3D-server-single-agents.
3D-server-single agents and their relationship with servers
and users are similar to their counterparts of multiple
agents, where the single agent serves as the front-end
of the servers. Users do not directly communicate with
servers, but with an intelligent web agent which is lo-
cated at the server side. In other words, the agent
may be regarded as a portal through which the server
is accessed.

This kind of web agent can intelligently offer or create
personalized virtual environments for users, based on
users’ queries or requests.

• 3D-Client-Multiple-Agent.
The relation between 3D-client-multiple-agent, virtual
reality server, and web users is shown in Figure 3. The
agents are located at the client side, usually serve as
users’ personal information assistants. Virtual reality



Virtual Reality Server

Web Browser

User

Web Agent

���

Web Agent

�������

Web Browser

Other User

Figure 3: 3D-client-multiple-agent

servers may have their own web agents. Web users
communicate with servers or other users (or agents)
either via web browsers or directly via web agents.
Other users may also have their own web agents (which
are omitted in the figure for reasons of simplicity).
This type of web agent is particularly useful in the
3D chat arena, in which the agents can serve as an
intelligent personal assistant to help users with infor-
mation gathering, and interface with other intelligent
web agents.

2.3 Architecture of 3D Web Agents
A lot of intelligent agent architectures have been proposed
in the agent communities. The most popular architecture is
the so-called BDI architecture [13], which consists of three
mental attitude components: Beliefs, Desires, and Inten-
tions. In [8], we propose an extended BDI architecture for
web agents, namely, a BDI architecture extended with a set
of sensors and effectors, which is shown in Figure 4.

The architecture is general, so it covers 2D web agents,
that provide a text-based interface to for example informa-
tion retrieval services, as well as 3D web agents like avatar-
embodied guides that help visitors to navigate in virtual
environments. In this paper, we focus on the architecture of
3D web agents, in particular, the components of the inter-
faces with 3D virtual worlds, namely the functionalities of
the sensors and effectors of web agents.

3D web agents under the extended BDI architecture are sup-
posed to interface with 3D virtual worlds which are built in
the Virtual Reality Modeling Language VRML [11]. VRML
is the most popular language in networked virtual environ-
ments.

In this paper, we do not describe a complete set of sensors
and effectors, for more and more sensors and effectors are
added to the architecture, with the development of the 3D
web agents. The core primitives of sensor predicates for 3D
web agents are :

• getV iewpointPosition(Agent,X, Y, Z): get the agent’s
viewpoint position;

• getV iewpointOrientation(Agent,X, Y, Z,R): get the
agent’s viewpoint orientation;

Desires

PPP���
BeliefsIntentions

Sensors

6

?

Effectors

Figure 4: Extended BDI architecture of web agents

• getPosition(Object,X, Y, Z): get the object’s position;

• getRotation(Object,X, Y, Z,R): get the object’s rota-
tion.

The core effector primitives for 3D web agents are:

• loadURL(URL); load a 3D VRML world;

• setV iewpointPosition(Agent,X, Y, Z): set agent’s view-
point position;

• setV iewpointOrientation(Agent,X, Y, Z,R): set agent’s
viewpoint orientation;

• setPosition(Object,X, Y, Z): set object’s position;

• setRotation(Object,X, Y, Z,R): set object’s rotation.

3. DISTRIBUTED LOGIC PROGRAMMING
(DLP)

Distributed logic programming [5] combines logic program-
ming, object oriented programming and parallelism. The
distinguishing feature of DLP with respect to other pro-
posals is the support for distributed backtracking over the
results of a rendezvous between objects. The use of DLP as
a language for the implementation of intelligent web agents,
is motivated by the following language characteristics:

• Functionality. DLP accepts the syntax and seman-
tics of logic programming languages. It is a high-level
declarative language, suitable for the construction of
software architectures in the domain of artificial in-
telligence. In particular, it’s a flexible language for
reasoning and manipulation of knowledge and beliefs.
Moreover, DLP incorporates object oriented program-
ming concepts, which make it a useful tool for pro-
gramming. The object oriented features in DLP are
shown in the figure 5.

• Distribution. DLP is also a distributed programming
language. DLP programs can be executed at differ-
ent computers in a distributed architecture. Moreover,
DLP allows for multiple threads of control in a single
program, which makes it a convenient tool for the im-
plementation of reactive agents. Furthermore, DLP



declaration of objects
: −object name.
: −object name : [base].
: −object name : [base1, base2, ...].
: −end object name.
declaration non-logical variables (nlv):
var i = 0, j = [1, 2, 3], k = f(a, b, c)
destructive assignment
nlv := Term
simplification/evaluation:
nlv := Expression
other nlv occurrences are
replaced by their current value.
object creation:
ObjectRef := new(ObjectNameOrConstructor)
method invocation:
ObjectRef <−method(...)
synchronuous communication :
accept(AcceptExpression1, AcceptExpression2, ...)
accept expression:
method(...) <== [Guard] ==> Body
method(...) <== [Guard]
method(...) ==> Body
method(...)

Figure 5: Features of DLP

programs are compiled to Java classes, which makes
it as a powerful tool for the implementation of mobile
web agents.

• Extensibility. DLP is an extensible language. Special-
purpose requirements for particular application domains
can easily be integrated in the existing object-oriented
language framework. As an illustration, we’ve extended
the run-time system with a 3D VRML interface, which
includes all the sensor and effector primitives men-
tioned above, but also their VRML EAI (external au-
thoring interface) counterparts [12], including oper-
ators for manipulating agent and object related at-
tributes. For instance, the predicate

getSFV ec3f(Object, F ield,X, Y, Z)

gets a value (which consists of three float numbers
X,Y , and Z) of the Field of the Object, and

setSFV ec3f(Object, F ield,X, Y, Z)

assigns the SFV ec3f value X,Y , and Z to the Field
of the Object.

4. BENCHMARK EXAMPLE: SOCCER PLAY-
ING

We have selected the soccer game as one of the benchmark
examples to test the implementation of 3D web agents and
explore the scenarios in which several avatars are playing the
soccer game in VRML 3D virtual worlds. These avatars can
be supported either by ordinary users, like human beings,
or by intelligent agents, which are controlled by active DLP
objects. Moreover, we also use DLP programs to control
the whole scenario of the game and the formulation of the

physics and dynamics of the soccer game, for instance, the
behavior of the soccer ball and the score of the game.

A demonstration version of WASP soccer game is now avail-
able for download from the WASP web site [15]. The pro-
gram runs in a Netscape web browser for which a Blaxxun
VRML browser has been installed. A screenshot of the soc-
cer playing game is shown in the following figure:

The intelligent agent avatars in the WASP soccer game have
the following functions:

• the cooperation of players by reasoning about players’
positions and roles;

• cognitive model of the soccer game;

• formulation of the physics of soccer ball;

In this section, we discuss the following issues:

4.1 Soccer agents and their roles
Based on their controlling modes, soccer player avatars are
classified in two types: soccer player and soccer player user.
Soccer players are controlled by a software agent, whereas
soccer player users are controlled by a human user. Each
avatar may play one of the following four roles: goal keeper,
defender, mid-fielder, and forward. Each role has its own
active area in the soccer field.

Each non-human player has the following cognitive loop:
sensing–thinking–acting, which is shown in figure 6. By
sensing, avatars use their sensors to retrieve the necessary
information about the current situation. The main informa-
tion sources are: agent position, soccer ball position, and
the goal gate position. After sensing, the perceived infor-
mation becomes part of the agent’s belief. In the stage of
thinking, avatars have to reason about other players’ po-
sitions and roles, and decide how to react, based on their
preferences, which come from the desire component, and
the information about the current situation, which comes
from the belief component. Thinking results in a set of in-
tentions, more exactly, a set of intended actions. By acting,
avatars use their effectors to take the intended actions.

4.2 Cognitive model of the soccer game
In the current version of the soccer game, we do not re-
quire that agents know all the rules of the soccer game, like
penalty kick, free kick, corner kick, etc [6]. In the simpli-
fied soccer game, soccer players have only the following kick
actions [14]: kick, pass, interception, and 1-2 pass.



Thinking

Belief

Desire

Intention ActingSensing - -
���1

---

6
�

?

Figure 6: cognitive loop of intelligent avatars

The agents in the WASP soccer game use a simple cogni-
tive model of soccer game, in which the agents consider the
information about several critical distances, then make a de-
cision to kick. The considered critical distances are:

ball distance: a distance between ball and the player;
goal distance: a distance between player and the goal gate;
kickable ball distance: a distance the agent can directly kick
the ball;
kickable goal distance: a distance the agent can kick the ball
to the goal;
runnable distance: a distance the agent can run to the ball;
passable distance: a distance the agent can pass the ball to
a team-mate.

In the desire component, players have the desire to gain
more scores, namely, kick more goals by themselves, or by
team-mates. Furthermore, each player prefers shooting by
themself to passing the ball to a team-mate. Despite this
simplified “cognitive” soccer game model, each player shows
a remarkably, intelligent behavior.

4.3 Formalizing physics of soccer ball
In virtual worlds, we consider a three dimensional coordi-
nate system, in which each point is represented by a vector,
like 〈x, y, z〉. Suppose that a soccer ball is kicked from an
initial point 〈x0, y0, z0〉 with initial velocity v = 〈vx, vy, vz〉
meter/second.

The acceleration due to gravity is in the negative y-direction
and there is no acceleration in the x-direction and z-direction.

kickedwithStaticStart(Ball,X0, Y 0, Z0, V x, V y, V z,
UpdateDelay) : −

Ttotal is V y/4.9,
steps := 1,
repeat,

delay(UpdateDelay),
T ′ is steps ∗ UpdateDelay,
X ′ is X0 + V x ∗ T ′,
Y ′ is Y 0 + V y ∗ T ′ − 4.9 ∗ T ′ ∗ T ′,
Z′ is Z0 + V z ∗ T ′,
setPosition(Ball,X ′, Y ′, Z′),
+ + steps,

steps > Ttotal//UpdateDelay,
!.

Figure 7: Soccer ball behavior with static start

: −object soccer game : [bcilib].

var url =′ soccer5.wrl′.

var timelimit = 3000.

main : −
loadURL(url),
Ball := new(ball(′ball′, ballposition,

timelimit)),
GoalKeeper1 := new(goalKeeper(goalKeeper1,

timelimit)),
GoalKeeper2 := new(goalKeeper(goalKeeper2,

timelimit)),
UserMe := new(soccerP layerUser(me red10,

timelimit)),
Blue9 := new(soccerP layer(blue9,

timelimit)),
Blue8 := new(soccerP layer(blue8,

timelimit)),

: −end object soccer game.

Figure 8: Starting soccer game in DLP

We have the following equations:

(1) x = x0 + vx ∗ t
(2) y = y0 + vy ∗ t− 1/2 ∗ g ∗ t2
(3) z = z0 + vz ∗ t

where t is the time parameter, and g is the acceleration of
a body dropped near the surface of the Earth. We take
g = 9.8. Suppose that the soccer ball is kicked from the
ground with a static start. The total time Ttotal of the
soccer ball taken from being kicked to falling back on the
ground can be calculated from the equation (2), by letting
y = 0 and y0 = 0. Thus, Ttotal = vy/4.9. The behavior of
the soccer ball kicked with static start can be expressed in
DLP as shown in Figure 7.

4.4 Multiple threads of control
DLP allows to create multiple threads to control the games,
which makes it relatively easy to model the behavior of mul-
tiple players. The starting scenario, which is described in



look at ball(Player,Ball) : −
getSFV ec3f(Player, position,X, , Z),
getPosition(Ball,X1, , Z1),
X 6= X1,
!,
Xdif is X −X1,
Zdif is Z1− Z,
R is atan(Zdif/Xdif)− sign(X −X1) ∗ 1.57,
setRotation(Player, 0.0, 1.0, 0.0, R).

Figure 9: Looking at the ball in DLP

eyebrow up(Object, Range) : −
getPosition(Object,X, Y, Z),
Y 1 is Y +Range,
setPosition(Object,X, Y 1, Z).

eyebrowUp and lipMove(Times, Interval, Range) : −
getPosition(r eyebrow,X1, Y 1, Z1),
getPosition(l eyebrow,X2, Y 2, Z2),
eyebrow up(r eyebrow, 0.01),
eyebrow up(l eyebrow, 0.01),
lip move(lower lip, T imes, Interval, Range),
setPosition(r eyebrow,X1, Y 1, Z1),
setPosition(l eyebrow,X2, Y 2, Z2).

Figure 10: Facial Animation in DLP

DLP, is shown in Figure 8.

4.5 Extensions of sensors/effectors
DLP has been extended with a set of core sensor/effector
primitives for 3D web agents. In addition, these sensor/effector
primitives can be extended to higher sensor/effector abstrac-
tion levels. For example, if we want soccer player avatars
to look at the soccer ball, we can define the operator ‘look-
at-ball’ in terms of the core sensor/effector primitives and
other available operators in DLP, as shown in Figure 9.

The intelligent behaviors of game playing avatars heavily de-
pend on the situation knowledge of the agent avatars. The
most useful information for determining playing strategies is
to reason about the position of other players (team-mates, or
opponent players) and the position of the soccer ball. Logic
programming languages offer a convenient way for knowl-
edge representation and reasoning; they have shown to be
an effective high-level tool for the programmability of intel-
ligent agent avatars.

4.6 Gestures and Facial Animation
WASP soccer avatars have several built-in gestures, like ball-
kicking and ball-holding. These gestures are designed with
VRML’s animation controlling machinery, the ROUTE se-
mantics[11]. Avatars can be controlled by DLP programs
to decide when these gestures are made. Moreover, DLP
programs can also be used to create gestures and anima-
tions on avatars. The avatars are HANIM 1.1 compliant
humanoids [9]. Figure 10 is an example of a simplified DLP
program which controls the facial animation of embodied
agents for non-verbal communicative acts, like looking cer-
tain with eyebrow up, as described in [10].

5. CONCLUSIONS
We have proposed an approach for the programmability of
intelligent agent avatars, which are supported by the dis-
tributed logic programming language DLP. We selected soc-
cer player avatars as one of the benchmark examples of 3D
web agents. Although the WASP soccer game is still under
development, our experiments have shown that the tech-
nologies of intelligent web agents and distributed logic pro-
gramming are convenient and powerful tools for the imple-
mentation of distributed intelligent agent avatars.

6. REFERENCES
[1] ActiveWorlds, http://www.activeworlds.com.

[2] Blaxxun Interactive Inc. http://www.blaxxun.com.

[3] Wolfgang Broll, Eckhard Meier, Thomas Schardt,
Symbolic Avatars Acting in Shared Virtual
Environments, http://orgwis.gmd.de/projects/VR,
2000.

[4] DLP web site: http://www.cs.vu.nl/∼eliens/
projects/logic/index.html.

[5] Anton Eliëns, DLP, A language for distributed logic
programming, Wiley, 1992.

[6] FIFA, Laws of soccer games, http://www.fifa.com,
2001.

[7] Zhisheng Huang, Anton Eliëns, Alex van Ballegooij,
Paul de Bra, A Taxonomy of Web Agents, Proceedings
of the 11th International Workshop on Database and
Expert Systems Applications, IEEE Computer Society,
pp. 765–769, 2000.

[8] Zhisheng Huang, Anton Eliëns, and Paul de Bra, An
Architecture for Web Agents, Proceedings of the
Conference EUROMEDIA’2001, SCS, 2001.

[9] Humanoid Animation Working Group,
http://www.hanim.org/, 2001.

[10] I. Poggi, C. Pelachaud, and F. De Rosis, Eye
communication in a conversational 3D synthetic
agent, AI Communications, IOS Press, 2000.

[11] ISO, VRML97: The Virtual Reality Modeling
Language, Part 1: Functional specification and UTF-8
encoding, ISO/IEC 14772-1, 1997.

[12] ISO, VRML97: The Virtual Reality Modeling
Language, Part 2: External authoring interface,
ISO/IEC 14772-2, 1997.

[13] A. Rao, and M. Georgeff, Modeling Rational Agents
within a BDI-Architecture, Proceedings of the Second
International Conference on Principles of Knowledge
Representation and Reasoning, 473-484, Morgan
Kaufmann Publishers, 1991.

[14] Tomoichi Takahashi, LogMonitor: from player’s action
analysis to collaboration analysis and advice on
formation, Robocup 99, 1999.

[15] WASP project home page:
http://www.cs.vu.nl/∼huang/wasp.

[16] Watson, M., AI Agents in Virtual Reality Worlds –
programming intelligent VR in C++, Wiley, 1996.


